欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知函數(shù)f(x)=ax3+bx2+c,其導(dǎo)函數(shù)f'(x)的圖象如圖,則函數(shù)f(x)的極小值為(  )
A.cB.a+b+cC.8a+4b+cD.3a+2b

分析 根據(jù)導(dǎo)函數(shù)的圖象,確定函數(shù)的單調(diào)性,從而可得函數(shù)f(x)的極小值.

解答 解:f′(x)=3ax2+2bx,根據(jù)導(dǎo)函數(shù)的圖象,
可知0,2是方程3ax2+2bx=0的根,
當(dāng)x<0或x>2時(shí),f′(x)>0,函數(shù)為增函數(shù),
當(dāng)0<x<2時(shí),f′(x)<0,函數(shù)為減函數(shù),
∴x=2時(shí),函數(shù)f(x)取得極小值,極小值為f(2)=8a+4b+c,
故選:C.

點(diǎn)評(píng) 本題考查導(dǎo)函數(shù)的圖象,考查極值的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$不平行,向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$+2$\overrightarrow$平行,則實(shí)數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.側(cè)面都是直角三角形的正三棱錐,底面邊長為2,則此棱錐的全面積是(  )
A.$3+\sqrt{3}$B.$6+2\sqrt{3}$C.$6+\sqrt{3}$D.$3+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,坐標(biāo)紙上的每個(gè)單元格的邊長為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng)(即橫坐標(biāo)為奇數(shù)項(xiàng),縱坐標(biāo)為偶數(shù)項(xiàng)),按如此規(guī)律下去,則a2009+a2010+a2011等于(  )
A.2 011B.1 006C.1 005D.1 003

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.自點(diǎn)P(2,2)作圓(x-2)2+(y-3)2=1的切線l,切線l的方程y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.大前提:若函數(shù)f(x)是奇函數(shù),則f(0)=0,小前提:$g(x)=\frac{1}{x}$是奇函數(shù),結(jié)論:g(0)=0,則該推理過程( 。
A.正確B.因大前提錯(cuò)誤導(dǎo)致結(jié)論出錯(cuò)
C.因小前提導(dǎo)致結(jié)論出錯(cuò)D.因推理形式錯(cuò)誤導(dǎo)致結(jié)論出錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f'(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),xf'(x)-f(x)<0成立,則f(x)>0的x的取值范圍是(-∞,-1)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.放煙花是逢年過節(jié)一種傳統(tǒng)慶祝節(jié)日的方式.已知一種煙花模型的三視圖如圖中的粗實(shí)線所示,網(wǎng)格紙上小正方形的邊長為1,則該煙花模型的表面積為(
A.$(18+\sqrt{3})π$B.$(21+\sqrt{3})π$C.$(18+\sqrt{5})π$D.$(21+\sqrt{5})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$cos(α-\frac{π}{3})=\frac{2}{3}$,α是銳角,則sinα=( 。
A.$\frac{{\sqrt{15}}}{6}$B.$\frac{{\sqrt{5}-\sqrt{3}}}{6}$C.$\frac{{2\sqrt{3}-\sqrt{5}}}{6}$D.$\frac{{4-\sqrt{15}}}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案