分析 (Ⅰ)直接利用切化弦以及二倍角公式化簡證明即可.
(Ⅱ)通過A+C=180°,得D=180°-B,利用(Ⅰ)化簡tan$\frac{B}{2}+tan\frac{D}{2}$=$\frac{1-cosB}{sinB}$+$\frac{1-cosD}{sinD}$=$\frac{2}{sinB}$,連結(jié)AC,求出sinB,然后求解即可.
解答
證明:(Ⅰ)tan$\frac{B}{2}$=$\frac{sin\frac{B}{2}}{cos\frac{B}{2}}$=$\frac{sinB}{2co{s}^{2}\frac{B}{2}}$=$\frac{sinB}{1+cosB}$,等式成立
(Ⅱ)由A+C=180°,得D=180°-B,
由(Ⅰ)可知:tan$\frac{B}{2}+tan\frac{D}{2}$=$\frac{1-cosB}{sinB}$+$\frac{1-cosD}{sinD}$=$\frac{2}{sinB}$
連結(jié)AC,在△ABC中,有AC2=62+32-2•6•3cosB,
在△ACD中,有AC2=52+42-2•5•4cosD,
所以62+32-2•6•3cosB=52+42-2•5•4cosD,
則:cosB=$\frac{1}{19}$,
于是sinB=$\frac{6\sqrt{10}}{19}$.
所以tan$\frac{B}{2}+tan\frac{D}{2}$=$\frac{19\sqrt{10}}{30}$.
點評 本題考查二倍角公式、誘導公式、余弦定理.簡單的三角恒等變換,考查函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想的應用.
科目:高中數(shù)學 來源:2016-2017學年湖南益陽市高二9月月考數(shù)學(理)試卷(解析版) 題型:選擇題
已知在△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,若△ABC的面積為S,且
,則tanC等于( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {0,1,2} | B. | {-1,0,1,2} | C. | {-1,0,1,2,3} | D. | {-1,3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [-$\frac{17}{4}$,$\frac{17}{4}$] | B. | (-$\frac{17}{4}$,$\frac{17}{4}$) | C. | [-$\frac{17}{4}$,4) | D. | [-$\frac{17}{4}$,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com