欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60°,
AF
=2
FB
.則橢圓C的離心率為
2
3
2
3
分析:設(shè)橢圓的左準(zhǔn)線為l,設(shè)A、B兩點在l上的射影分別為C、D,連接AC、BD,過點B作BG⊥AC利用圓錐曲線的統(tǒng)一定義,再結(jié)合直角△ABG中,∠BAG=60°,可求出邊之間的長度之比,可得離心率的值.
解答:解:如圖,設(shè)設(shè)橢圓的左準(zhǔn)線為l,過A點作AC⊥l于C,
過點B作BD⊥l于D,再過B點作BG⊥AC于G,
直角△ABG中,∠BAG=60°,所以AB=2AG,…①
由圓錐曲線統(tǒng)一定義得:e=
AF
AC
=
BF
BD

|
AF
|=2|
FB
|

∴AC=2BD
直角梯形ABDC中,AG=AC-BD=
1
2
AC
…②
①、②比較,可得AB=AC,
又∵AF=
2
3
AB

e=
AF
AC
=
AF
AB
=
2
3

所求的離心率為
2
3

故答案為:
2
3
點評:本題考查橢圓的性質(zhì)標(biāo)和準(zhǔn)方程,以及直線和圓錐曲線的位置關(guān)系.本題運用圓錐曲線的統(tǒng)一定義,結(jié)合解含有60°的直角三角形,求橢圓的離心率,屬于幾何方法,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點為F,它與直線l:y=k(x+1)相交于P、Q兩點,l與x軸的交點M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項.
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點O對稱,若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點分別為F1F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0

(1)若過A.Q.F2三點的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M.N兩點.試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過定點A(1,2),則橢圓的中心到準(zhǔn)線的距離的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦點分別為F1,F(xiàn)2,若P 是橢圓上的一點,|
PF1
|+|
PF2
|=4
,離心率e=
3
2

(1)求橢圓C的方程;
(2)若P 是第一象限內(nèi)該橢圓上的一點,
PF1
PF2
=-
5
4
,求點P的坐標(biāo);
(3)設(shè)過定點P(0,2)的直線與橢圓交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點分別為F1,F(xiàn)2,離心率為e=
2
2
,以F1為圓心,|F1F2|為半徑的圓與直線x-
3
y-3=0
相切.
(I)求橢圓C的方程;
(II)直線y=x交橢圓C于A、B兩點,D為橢圓上異于A、B的點,求△ABD面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案