如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲.再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).![]()
(1)當(dāng)圓柱底面半徑r取何值時(shí),S取得最大值?并求出該最大值(結(jié)果精確到0.01平方米).
(2)若要制作一個(gè)如圖放置的、底面半徑為0.3米的燈籠,請(qǐng)作出燈籠的三視圖(作圖時(shí),不需考慮骨架等因素).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,
,
,過(guò)動(dòng)點(diǎn)A作
,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿
將△
折起,使
(如圖2所示).![]()
(1)當(dāng)
的長(zhǎng)為多少時(shí),三棱錐
的體積最大;
(2)當(dāng)三棱錐
的體積最大時(shí),設(shè)點(diǎn)
,
分別為棱
,
的中點(diǎn),試在棱
上確定一點(diǎn)
,使得![]()
,并求
與平面
所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四面體的六條棱中,有五條棱長(zhǎng)都等于a.
(1)求該四面體的體積的最大值;
(2)當(dāng)四面體的體積最大時(shí),求其表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4
,AB=2CD=8.![]()
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?
(3)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱ABC
A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.![]()
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=
,求三棱柱ABC
A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在體積為
的圓錐
中,已知
的直徑
,
是
的中點(diǎn),
是弦
的中點(diǎn).![]()
(1)指出二面角
的平面角,并求出它的大。
(2)求異面直線
與
所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直三棱柱
中,
,![]()
是
中點(diǎn),
是
中點(diǎn).![]()
(1)求三棱柱
的體積;
(2)求證:
;
(3)求證:
∥面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=
,E為CD的中點(diǎn),將△BCE沿BE折起,使得CO⊥DE,其中垂足O在線段DE內(nèi).![]()
(1)求證:CO⊥平面ABED;
(2)問(wèn)∠CEO(記為θ)多大時(shí),三棱錐C-AOE的體積最大,最大值為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,圓柱的高為2,底面半徑為
,AE、DF是圓柱的兩條母線,過(guò)
作圓柱的截面交下底面于
,四邊形ABCD是正方形.![]()
(Ⅰ)求證
;
(Ⅱ)求四棱錐E-ABCD的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com