欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=x2﹣(a2﹣a)x﹣2
(1)若當x∈[1,3]時,f(x)為單調(diào)函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)在[2,4]上的最大值g(a);
(3)求g(a)的最大值.

解:(1)∵函數(shù)f(x)=x2﹣(a2﹣a)x﹣2的圖象是開口方向朝上,
以x=為對稱軸的拋物線若當x∈[1,3]時,f(x)為單調(diào)函數(shù),
≤1,或≧3
解得a≤﹣2,或﹣1≤a≤2,或a≥3
故a的取值范圍為(﹣∞,﹣2]∪[﹣1,2]∪[3,+∞)
(2)當≧3,
即a≤﹣2,或a≧3時,
f(x)在[2,4]上的最大值
g(a)=f(2)=﹣2(a2﹣a)+2;
<3,即﹣2<a<3時,
f(x)在[2,4]上的最大值
g(a)=f(4)=﹣4(a2﹣a)+14;
故g(a)=
(3)由(2)得當a≤﹣2,或a≥3時,
g(a)的最大值為﹣10
當﹣2<a<3時g(a)的最大值為15
故g(a)的最大值為15
練習冊系列答案
  • 西城學科專項測試系列答案
  • 小考必做系列答案
  • 小考實戰(zhàn)系列答案
  • 小考復習精要系列答案
  • 小考總動員系列答案
  • 小升初必備沖刺48天系列答案
  • 68所名校圖書小升初高分奪冠真卷系列答案
  • 伴你成長周周練月月測系列答案
  • 小升初金卷導練系列答案
  • 萌齊小升初強化模擬訓練系列答案
  • 年級 高中課程 年級 初中課程
    高一 高一免費課程推薦! 初一 初一免費課程推薦!
    高二 高二免費課程推薦! 初二 初二免費課程推薦!
    高三 高三免費課程推薦! 初三 初三免費課程推薦!
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:

    精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
    π
    2
    )的部分圖象如圖所示,則f(x)的解析式是( 。
    A、f(x)=2sin(πx+
    π
    6
    )(x∈R)
    B、f(x)=2sin(2πx+
    π
    6
    )(x∈R)
    C、f(x)=2sin(πx+
    π
    3
    )(x∈R)
    D、f(x)=2sin(2πx+
    π
    3
    )(x∈R)

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2012•深圳一模)已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設(shè)g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2011•上海模擬)已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當a=1,b=2時,求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學 來源:上海模擬 題型:解答題

    已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當a=1,b=2時,求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學 來源:深圳一模 題型:解答題

    已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設(shè)g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

    查看答案和解析>>

    同步練習冊答案