分析 先求導(dǎo),根據(jù)f(x)的單調(diào)性求函數(shù)的最值.
解答 解:∵f(x)=sinxcosx+sinx,
∴f′(x)=cos2x-sin2x+cosx=2cos2x+cosx-1,
∵x∈[-$\frac{π}{2}$,$\frac{π}{2}$],
∴0≤cosx≤1,
令f′(x)=0,解得cosx=$\frac{1}{2}$或cosx=-1(舍),即x=-$\frac{π}{3}$,或x=$\frac{π}{3}$,
當(dāng)f′(x)>0時(shí),解的cosx>$\frac{1}{2}$,即-$\frac{π}{3}$<x<$\frac{π}{3}$,函數(shù)單調(diào)遞增,
當(dāng)f′(x)<0時(shí),解的0≤cosx<$\frac{1}{2}$,即-$\frac{π}{2}$≤x<-$\frac{π}{3}$或$\frac{π}{3}$<x≤$\frac{π}{2}$,函數(shù)單調(diào)遞減,
當(dāng)x=-$\frac{π}{3}$時(shí),函數(shù)f(x)有極小值,即f(-$\frac{π}{3}$)=sin(-$\frac{π}{3}$)cos(-$\frac{π}{3}$)+sin(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$×$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$=-$\frac{3\sqrt{3}}{4}$,
∵f($\frac{π}{2}$)=1,
∴函數(shù)的最小值是-$\frac{3\sqrt{3}}{4}$.
故答案為:-$\frac{3\sqrt{3}}{4}$.
點(diǎn)評 本題考查了導(dǎo)數(shù)和函數(shù)的最值的關(guān)系,以及三角函數(shù)的圖象和性質(zhì),關(guān)鍵是判斷函數(shù)的單調(diào)區(qū)間,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\overrightarrow{{a}_{0}}$∥x軸 | B. | |$\overrightarrow{{a}_{0}}$|=1 | C. | $\overrightarrow{{a}_{0}}$∥y軸 | D. | $\overrightarrow{{a}_{0}}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a>b>c | B. | c>a>b | C. | c>b>a | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=$\frac{{x}^{2}-4}{x-2}$與y=x+2 | B. | y=$\sqrt{{x}^{2}-3}$與y=x-3 | ||
| C. | y=2x-1(x≥0)與s=2t-1(t≥0) | D. | y=x0與y=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\sqrt{2}$ | C. | -1 | D. | -$\sqrt{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com