欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)函數(shù)f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然對(duì)數(shù)的底數(shù).
(1)求p與q的關(guān)系;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍.
(3)設(shè)g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.
(1)由題意,∵函數(shù)f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,∴(p-q)(e+
1
e
)=0
e+
1
e
≠0,∴p-q=0,∴p=q
(2)由(1)知,f(x)=px-
p
x
-2lnx
,求導(dǎo)函數(shù),可得f′(x)=
px2-2x+p
x2

當(dāng)p=0時(shí),f′(x)=-
2
x
<0,所以f(x)在其定義域(0,+∞)內(nèi)為單調(diào)減函數(shù)
當(dāng)p>0時(shí),要使f(x)在其定義域(0,+∞)內(nèi)為單調(diào)函數(shù),由于h(x)=px2-2x+p圖象為開口向上的拋物線,所以只需h(x)在(0,+∞)內(nèi)滿足h(x)≥0恒成立
函數(shù)h(x)=px2-2x+p的對(duì)稱軸為x=
1
p
∈(0,+∞)
,∴h(x)min=p-
1
p

∴只需p-
1
p
≥0
,∵p>0,∴p≥1
綜上所述,p的取值范圍為{0}∪[1,+∞)
(3)∵g(x)=
2e
x
在[1,e]上是減函數(shù),
∴x=e時(shí),g(x)min=2;x=1時(shí),g(x)max=2e,即g(x)∈[2,2e]
①當(dāng)p=0時(shí),由(2)知f(x)在[1,e]上是減函數(shù),∴f(x)min=f(1)=0,不合題意;
②當(dāng)p≥1時(shí),由(2)知f(x)在[1,e]上是增函數(shù),f(1)=0<2,
g(x)=
2e
x
在[1,e]上是減函數(shù),故只需f(x)max>g(x)min(x∈[1,e]),
∵f(x)max=f(e)=p(e-
1
e
)-2,g(x)min=2,
∴p(e-
1
e
)-2>2,∴p>
4e
e2-1
;
③當(dāng)0<p<1時(shí),由x∈[1,e],x-
1
x
≥0,
由(2)知當(dāng)p=1時(shí),f(x)在[1,e]上是增函數(shù),f(x)=p(x-
1
x
)-2lnx
x-
1
x
-2lnx
e-
1
e
-2<
2,不合題意
綜上,實(shí)數(shù)p的取值范圍是(
4e
e2-1
,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武昌區(qū)模擬)設(shè)函數(shù)f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然對(duì)數(shù)的底數(shù).
(1)求p與q的關(guān)系;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍.
(3)設(shè)g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•合肥模擬)設(shè)函數(shù)f(x)=px-
px
-mlnx

(1)當(dāng)p=2且m=5時(shí),求函數(shù)f(x)在(1,+∞)的極值;
(1)若m=2且f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•合肥模擬)設(shè)函數(shù)f(x)=px-
p
x
,m(x)=2lnx..
(1)當(dāng)p≥1時(shí),證明:對(duì)任意x∈(1,+∞),f(x)>m(x)恒成立;
(2)設(shè)g(x)=
2e
x
,若對(duì)任意x1,x2∈[1,e],f(x1)-m(x1)<g(x2)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:合肥模擬 題型:解答題

設(shè)函數(shù)f(x)=px-
p
x
,m(x)=2lnx..
(1)當(dāng)p≥1時(shí),證明:對(duì)任意x∈(1,+∞),f(x)>m(x)恒成立;
(2)設(shè)g(x)=
2e
x
,若對(duì)任意x1,x2∈[1,e],f(x1)-m(x1)<g(x2)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案