分析 根據(jù)焦點到其漸近線的距離求出b的值即可得到結(jié)論.
解答 解:雙曲線的漸近線為y=±bx,不妨設為y=-bx,即bx+y=0,
焦點坐標為F(c,0),
則焦點到其漸近線的距離d=$\frac{bc}{\sqrt{1+^{2}}}$=$\frac{bc}{c}$=b=2$\sqrt{2}$,
則c=$\sqrt{1+^{2}}$=$\sqrt{1+(2\sqrt{2})^{2}}=\sqrt{1+8}$=$\sqrt{9}$=3,
則雙曲線的焦距等于2c=6,
故答案為:6
點評 本題主要考查雙曲線截距的求解,根據(jù)焦點到其漸近線的距離建立方程關系求出b的值是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 1+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{6}$或$\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 72 | B. | 108 | C. | 180 | D. | 216 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 4 | C. | 3$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com