【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成
,
,
,
,
五組,并作出如圖頻率分布直方圖:
![]()
(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機(jī)抽取2戶進(jìn)行捐款援助,設(shè)抽出損失超過8000元的居民為
戶,求
的分布列和數(shù)學(xué)期望;
(3)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如圖,根據(jù)圖表格中所給數(shù)據(jù),分別求
,
,
,
,
,
,
的值,并說明是否有
以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過4000元 | 經(jīng)濟(jì)損失超過4000元 | 合計(jì) | |
捐款超過500元 |
|
| |
捐款不超過500元 |
|
| |
合計(jì) |
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:臨界值表參考公式:
,
.
【答案】(1)
(2)
(3)有
以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).
【解析】
試題分析:(Ⅰ)根據(jù)頻率分布直方圖,即可估計(jì)小區(qū)平均每戶居民的平均損失;
(Ⅱ)由頻率分布直方圖可得,損失不少于6000元的居民共有(0.00003+0.00003)×2000×50=6戶,損失為6000~8000元的居民共有0.00003×2000×50=3戶,損失不少于8000元的居民共有0.00003×2000×50=3戶,即可求這兩戶在同一分組的概率;
(Ⅲ)由頻率分布直方圖及所給2×2列聯(lián)表得b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并求出K2,與臨界值比較,即可得出結(jié)論.
試題解析:(1)記每戶居民的平均損失為
元,
則![]()
.
(2)由頻率分布直方圖,可得超過4000元的居民共有
戶,損失超過8000元的居民共有
戶,
因此
的可能值為0,1,2,
,
,
,
的分布列為:
| 0 | 1 | 2 |
|
|
|
|
.
(3)解得
,
,
,
,
,
,
,
,
所以有
以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且滿足a2+c2-b2=
ac.
(1)求角B的大小;
(2)若2bcos A=
(ccosA+acosC),BC邊上的中線AM的長(zhǎng)為
,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
圖象上不同兩點(diǎn)
,
處切線的斜率分別是
,
規(guī)定
(
為線段
的長(zhǎng)度)叫做曲線
在點(diǎn)
與
之間的“平方彎曲度”,給出以下命題:
①函數(shù)
圖象上兩點(diǎn)
與
的橫坐標(biāo)分別為1和2,則
;
②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“平方彎曲度”為常數(shù);
③設(shè)點(diǎn)
,
是拋物線
上不同的兩點(diǎn),則
;
④設(shè)曲線
(
是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn)
,
,且
,則
的最大值為
.
其中真命題的序號(hào)為__________(將所有真命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=
+
-1,且an>0,n∈N*.
(1)求a1,a2,a3,并猜想{an}的通項(xiàng)公式;
(2)證明(1)中的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ax-
x2-3ln x,其中a∈R,為常數(shù).
(1)若f(x)在x∈[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E,F分別是棱AA′,CC′的中點(diǎn),過直線EF的平面分別與棱BB′、DD′分別交于M,N兩點(diǎn),設(shè)BM=x,x∈[0,1],給出以下四個(gè)結(jié)論:
![]()
①平面MENF⊥平面BDD′B′;
②直線AC∥平面MENF始終成立;
③四邊形MENF周長(zhǎng)L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C′-MENF的體積V=h(x)為常數(shù);
以上結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(
,且
).
(1)當(dāng)
時(shí),若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍;
(2)若
,設(shè)
,
是
的導(dǎo)函數(shù),判斷
的零點(diǎn)個(gè)數(shù),并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的值域;
(2)若
為奇函數(shù),求實(shí)數(shù)
的值;
(3)若關(guān)于
的方程
在區(qū)間
上無解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
是橢圓
的左頂點(diǎn),經(jīng)過左焦點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn),求
與
的面積之差的絕對(duì)值的最大值.(
為坐標(biāo)原點(diǎn))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com