(四川卷理22)已知
是函數(shù)
的一個(gè)極值點(diǎn)。
(Ⅰ)求
;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若直線
與函數(shù)
的圖象有3個(gè)交點(diǎn),求
的取值范圍。
【解】:(Ⅰ)因?yàn)?sub>![]()
所以![]()
因此![]()
(Ⅱ)由(Ⅰ)知,
![]()
![]()
當(dāng)
時(shí),![]()
當(dāng)
時(shí),![]()
所以
的單調(diào)增區(qū)間是![]()
的單調(diào)減區(qū)間是![]()
(Ⅲ)由(Ⅱ)知,
在
內(nèi)單調(diào)增加,在
內(nèi)單調(diào)減少,在
上單調(diào)增加,且當(dāng)
或
時(shí),![]()
所以
的極大值為
,極小值為![]()
因此![]()
![]()
所以在
的三個(gè)單調(diào)區(qū)間
直線
有
的圖象各有一個(gè)交點(diǎn),當(dāng)且僅當(dāng)![]()
因此,
的取值范圍為
。
【點(diǎn)評(píng)】:此題重點(diǎn)考察利用求導(dǎo)研究函數(shù)的單調(diào)性,最值問(wèn)題,函數(shù)根的問(wèn)題;
【突破】:熟悉函數(shù)的求導(dǎo)公式,理解求導(dǎo)在函數(shù)最值中的研究方法是解題的關(guān)鍵,數(shù)形結(jié)合理解函數(shù)的取值范圍。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(四川卷理22)已知
是函數(shù)
的一個(gè)極值點(diǎn)。
(Ⅰ)求
;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若直線
與函數(shù)
的圖象有3個(gè)交點(diǎn),求
的取值范圍。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com