【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量
(小時)都在30小時以上,其中不足50小時的周數(shù)有5周,不低于50小時且不超過70小時的周數(shù)有35周,超過70小時的周數(shù)有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量
(百斤)與使用某種液體肥料
(千克)之間對應數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合
與
的關系?請計算相關系數(shù)
并加以說明(精確到0.01).(若
,則線性相關程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數(shù)受周光照量
限制,并有如下關系:
周光照量 |
|
|
|
光照控制儀最多可運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.
附:相關系數(shù)公式
,參考數(shù)據(jù)
,
.
【答案】(1)可用線性回歸模型擬合
與
的關系(2)商家在過去50周周總利潤的平均值為4600元
【解析】試題分析:(1)由折線圖,可得
,依次算得
,
,
,可求得r
, 所以可用線性回歸模型擬合
與
的關系.(2)分別計算安裝1臺,2臺時所獲周利潤值(期望值),數(shù)值大的為所選擇。
試題解析:(1)由已知數(shù)據(jù)可得
,
,
因為
,
,
,
所以相關系數(shù)
,
因為
,所以可用線性回歸模型擬合
與
的關系.
(2)記商家周總利潤為
元,由條件可知至少需要安裝1臺,最多安裝3臺光照控制儀.
①安裝1臺光照控制儀可獲得周總利潤3000元;
②安裝2臺光照控制儀的情形:
當
時,只有1臺光照控制儀運行,此時周總利潤
元,
當
時,2臺光照控制儀都運行,此時周總利潤
元,
故
的分布列為:
| 2000 | 6000 |
| 0.2 | 0.8 |
所以
元.
綜上可知,為使商家周利潤的均值達到最大應該安裝2臺光照控制儀.
科目:高中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線
的方程為
,直線
的方程為
,直線
交拋物線
于
,
兩點,點
為線段
中點,直線
,
分別與拋物線切于點
,
.
(
)求:線段
的長.
(
)直線
平行于拋物線
的對稱軸.
(
)作直線
直線
,分別交拋物線
和兩條已知切線
,
于點
,
,
,
.
求證:
.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二階矩陣M有特征值λ=8及對應的一個特征向量
=[
],并且矩陣M對應的變換將點(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點
為圓
的圓心,
是圓上動點,點
在圓的半徑
上,且有點
和
上的點
,滿足![]()
(1)當
在圓上運動時,求點
的軌跡方程;
(2)若斜率為
的直線
與圓
相切,與(1)中所求點
的軌跡教育不同的兩點
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
過兩點
,
,且圓心
在直線
上.
(Ⅰ)求圓
的標準方程;
(Ⅱ)直線
過點
且與圓
有兩個不同的交點
,
,若直線
的斜率
大于0,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線
使得弦
的垂直平分線過點
,若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點
的直線與圓
相切,且與直線
垂直,則
( )
A. 2 B. 1 C.
D. ![]()
【答案】A
【解析】因為點P(2,2)滿足圓
的方程,所以P在圓上,
又過點P(2,2)的直線與圓
相切,且與直線axy+1=0垂直,
所以切點與圓心連線與直線axy+1=0平行,
所以直線axy+1=0的斜率為:
.
故選A.
點睛:對于直線和圓的位置關系的問題,可用“代數(shù)法”或“幾何法”求解,直線與圓的位置關系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方法的結(jié)合,“代數(shù)法”與“幾何法”是從不同的方面和思路來判斷的,解題時不要單純依靠代數(shù)計算,若選用幾何法可使得解題過程既簡單又不容易出錯.
【題型】單選題
【結(jié)束】
23
【題目】設
分別是雙曲線
的左、右焦點.若點
在雙曲線上,且
,則
( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校射擊隊的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該選手射擊一次,
(1)命中9環(huán)或10環(huán)的概率.
(2)至少命中8環(huán)的概率.
(3)命中不足8環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
在第一象限內(nèi)的點
到焦點
的距離為
.
(1)若
,過點
,
的直線
與拋物線相交于另一點
,求
的值;
(2)若直線
與拋物線
相交于
兩點,與圓
相交于
兩點,
為坐標原點,
,試問:是否存在實數(shù)
,使得
的長為定值?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com