欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知函數(shù)$f(x)=2sin(2ωx+\frac{π}{6})+1$(其中0<ω<2),若直線$x=\frac{π}{6}$是函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸.
(1)求ω及f(x)的最小正周期;
(2)求函數(shù)f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的單調(diào)遞減區(qū)間.
(3)若函數(shù)g(x)=f(x)+a在區(qū)間$[{0,\frac{π}{2}}]$上的圖象與x軸沒(méi)有交點(diǎn),求實(shí)數(shù)a的取值范圍.

分析 (1)利用正弦函數(shù)的圖象的對(duì)稱(chēng)性求得ω,可得函數(shù)的解析式,再利用正弦函數(shù)的周期性,求得f(x)的最小正周期.
(2)利用弦函數(shù)的單調(diào)性,求得函數(shù)f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的單調(diào)減區(qū)間.
(3)利用正弦函數(shù)的定義域和值域,求得實(shí)數(shù)a的取值范圍.

解答 解:(1)由題可知:2ω•$\frac{π}{6}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,故有ω=3k+1,k∈Z,
又∵0<ω<1,∴ω=1,f(x)=2sin(2x+$\frac{π}{6}$)+1,由此可得函數(shù)的周期為T(mén)=π.
(2)令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,可得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z,
∵$x∈[{-\frac{π}{2},\frac{π}{2}}]$,故函數(shù)f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的單調(diào)減區(qū)間為$[{-\frac{π}{2},-\frac{π}{3}}]$和$[{\frac{π}{6},\frac{π}{2}}]$.
(3)令g(x)=0得g(x)=f(x)+a=0可得a=-1-2sin(2x+$\frac{π}{6}$),
在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴-1-2sin(2x+$\frac{π}{6}$)在區(qū)間[0,$\frac{π}{2}$]上的值域?yàn)閇-3,0].
為使函數(shù)g(x)=f(x)+a在區(qū)間$[{0,\frac{π}{2}}]$上的圖象與x軸沒(méi)有交點(diǎn),則實(shí)數(shù)a的取值范圍為a<-3或a>0.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象的對(duì)稱(chēng)性、正弦函數(shù)的周期性、正弦函數(shù)的定義域和值域,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知α,β,γ是某三角形的三個(gè)內(nèi)角,給出下列四組數(shù)據(jù):
①sinα,sinβ,sinγ;②sin2α,sin2β,sin2γ;③${cos^2}\frac{α}{2},{cos^2}\frac{β}{2},{cos^2}\frac{γ}{2}$;④$tan\frac{α}{2},tan\frac{β}{2},tan\frac{γ}{2}$
分別以每組數(shù)據(jù)作為三條線段的長(zhǎng),其中一定能構(gòu)成三角形的有( 。
A.1組B.2組C.3組D.4組

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.將命題“菱形的對(duì)角線互相垂直”改為“若p,則q”的形式,再寫(xiě)出它的逆命題、否命題、逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}滿足a1=0,且an,n+1,an+1成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊過(guò)點(diǎn)P(-1,2),則cosθ=( 。
A.-1B.2C.$-\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.?dāng)?shù)列{an}滿足${2^n}{a_n}={2^{n+1}}{a_{n+1}}-1$,且a1=1,若${a_n}<\frac{1}{5}$,則n的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.用反證法證明命題“a,b∈N,如果ab為偶數(shù),那么a,b中至少有一個(gè)為偶數(shù)”,則正確的假設(shè)內(nèi)容是(  )
A.a,b都為偶數(shù)B.a,b不為偶數(shù)
C.a,b都不為偶數(shù)D.a,b中有一個(gè)不為偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知{an}是等差數(shù)列,滿足a2=6,a5=15,數(shù)列{bn}滿足b2=8,b5=31,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知θ∈[0,2π),當(dāng)θ取遍全體實(shí)數(shù)時(shí),直線xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)所圍成的圖形的面積是(  )
A.πB.C.D.16π

查看答案和解析>>

同步練習(xí)冊(cè)答案