【題目】煉鋼是一個(gè)氧化降碳的過(guò)程,鋼水含碳量的多少直接影響冶煉時(shí)間的長(zhǎng)短,必須掌握鋼水含碳量和冶煉時(shí)間的關(guān)系.如果已測(cè)得爐料溶化完畢時(shí)鋼水的含碳量x與冶煉時(shí)間y(從爐料溶化完畢到出鋼的時(shí)間)的一組數(shù)據(jù),如表所示:
x(0.01%) | 104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 |
y/min | 100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 |
(1)y與x是否具有線性相關(guān)關(guān)系?
(2)如果y與x具有線性相關(guān)關(guān)系,求回歸直線方程.
(3)預(yù)報(bào)當(dāng)鋼水含碳量為160個(gè)0.01%時(shí),應(yīng)冶煉多少分鐘?
參考公式:r=
,
線性回歸方程![]()
【答案】(1) 見(jiàn)解析;(2)
=1.267x-30.47. (3)172分鐘.
【解析】試題分析:(1)根據(jù)題意列表并計(jì)算r≈0.9906>0.75,可得結(jié)論;
(2)利用(1)中所求的數(shù)據(jù)可以求得
≈1.267,
=-30.47,可得所求的回歸直線方程;
(3)當(dāng)x=160時(shí),代入計(jì)算,可得結(jié)論.
試題解析:(1)根據(jù)題意列表并計(jì)算如表:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
xi | 104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 |
yi | 100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 |
x1yi | 10400 | 36000 | 39900 | 32745 | 22785 | 18090 | 25500 | 39155 | 47940 | 15125 |
| ||||||||||
于是r=
≈0.9906>0.75.
∴y與x具有線性相關(guān)關(guān)系.
(2)利用(1)中所求的數(shù)據(jù)可以求得
,
的值為
=
≈1.267,
=
-![]()
=-30.47,
∴所求的回歸直線方程
=1.267x-30.47.
(3)當(dāng)x=160時(shí),
=1.267×160-30.47≈172(min),
即大約需要冶煉172分鐘.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某城市街道上一側(cè)路邊邊緣
某處安裝路燈,路寬
為
米,燈桿
長(zhǎng)4米,且與燈柱
成
角,路燈采用可旋轉(zhuǎn)燈口方向的錐形燈罩,燈罩軸線
與燈的邊緣光線(如圖
,
)都成
角,當(dāng)燈罩軸線
與燈桿
垂直時(shí),燈罩軸線正好通過(guò)
的中點(diǎn).
(I)求燈柱
的高
為多少米;
(II)設(shè)
,且
,求燈所照射路面寬度
的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)證明:
;
(2)若對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸入的t=0.01,則輸出的n=( )
![]()
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
,動(dòng)點(diǎn)
滿足
,其中
分別表示直線
的斜率,
為常數(shù),當(dāng)
時(shí),點(diǎn)
的軌跡為
;當(dāng)
時(shí),點(diǎn)
的軌跡為
.
(1)求
的方程;
(2)過(guò)點(diǎn)
的直線與曲線
順次交于四點(diǎn)
,且
,
,是否存在這樣的直線
,使得
成等差數(shù)列?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,底面
為正三角形,側(cè)棱
底面
.已知
是
的中點(diǎn),
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)求證:
∥平面
;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
,側(cè)面
是邊長(zhǎng)為2的正三角形,且平面
平面
,底面
是
的菱形,
為棱
上的動(dòng)點(diǎn),且
.
(Ⅰ)求證:
;
(Ⅱ)試確定
的值,使得二面角
的平面角余弦值為
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,曲線
在點(diǎn)
處的切線方程為
.
(1)求
的值;
(2)如果當(dāng)
,且
時(shí),
,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com