欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

討論函數(shù)f(x)=x+(a>0)的單調(diào)性.

f(x)分別在(-∞,-]、[,+∞)上為增函數(shù);f(x)分別在[-,0)、(0,]上為減函數(shù)


解析:

方法一  顯然f(x)為奇函數(shù),所以先討論函數(shù)f(x)在(0,+∞)上的單調(diào)性,設x1>x2>0,則

f(x1)-f(x2) =(x1+)-(x2+)=(x1-x2)·(1-).

∴當0<x2<x1時,>1,

則f(x1)-f(x2)<0,即f(x1)<f(x2),故f(x)在(0,]上是減函數(shù).

當x1>x2時,0<<1,則f(x1)-f(x2)>0,即f(x1)>f(x2),

故f(x)在[,+∞)上是增函數(shù).∵f(x)是奇函數(shù),

∴f(x)分別在(-∞,-]、[,+∞)上為增函數(shù);f(x)分別在[-,0)、(0,]上為減函數(shù).

方法二  由f ′(x)=1-=0可得x=±

當x>時或x<-時,f ′(x)>0,∴f(x)分別在(,+∞)、(-∞,-]上是增函數(shù).

同理0<x<或-<x<0時,f′(x)<0

即f(x)分別在(0,]、[-,0)上是減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=bx,g(x)=ax2+1,h(x)=ln(1+x2).(a,b∈R)
(1)若M={x|f(x)+g(x)≥0},-1∈M,2∈M,z=3a-b,求z的取值范圍;
(2)設F(x)=f(x)+h(x),且b≤0,試討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•lnx+b•x2在點(1,f(1))處的切線方程為x-y-1=0.
(1)求f(x)的表達式;
(2)若f(x)滿足f(x)≥g(x)恒成立,則稱f(x)是g(x)的一個“上界函數(shù)”,如果函數(shù)f(x)為g(x)=
t
x
-lnx
(t為實數(shù))的一個“上界函數(shù)”,求t的取值范圍;
(3)當m>0時,討論F(x)=f(x)+
x2
2
-
m2+1
m
x
在區(qū)間(0,2)上極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

討論函數(shù)f(x)=x+
ax
(a>0)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域為[
1
a
,1]
,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)證明:函數(shù)f(x)=x+
2
x
在(0,
2
]上是減函數(shù),在[
2
,+∞)上是增函數(shù);
(2)試討論方程x+
2
x
=a,(x∈(1,2],a∈R)的解的個數(shù).

查看答案和解析>>

同步練習冊答案