| A. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{30}$+$\frac{{y}^{2}}{10}$=1 | C. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{45}$+$\frac{{y}^{2}}{25}$=1 |
分析 設(shè)橢圓的右焦點(diǎn)為F′,由|OP|=|OF|及橢圓的對(duì)稱性知,△PFF′為直角三角形;由勾股定理,得|PF′|;由橢圓的定義,得a2;由b2=a2-c2,得b2;然后根據(jù)橢圓標(biāo)準(zhǔn)方程的形式,直接寫(xiě)出橢圓的方程.
解答
解:由題意可得c=2$\sqrt{5}$,設(shè)右焦點(diǎn)為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,
所以∠PFF′+∠OF′P=∠FPO+∠OPF′,
由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.
在Rt△PFF′中,由勾股定理,得|PF′|=$\sqrt{{FF′}^{2}{-PF}^{2}}$=$\sqrt{{(4\sqrt{5})}^{2}{-4}^{2}}$=8,
由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,
于是 b2=a2-c2=36-${(2\sqrt{5})}^{2}$=16,
所以橢圓的方程為$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1.
故選:C.
點(diǎn)評(píng) 本題屬容易題,主要考查了橢圓的定義及其幾何特征.對(duì)于橢圓標(biāo)準(zhǔn)方程的求解,關(guān)鍵是根據(jù)題設(shè)或圖形的幾何特征,列出關(guān)于a,b,c的三個(gè)方程,這樣才能確定a2,b2,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com