分析:(Ⅰ)法一:由na
n+1=2S
n,得當(dāng)n≥2時(shí),(n-1)a
n=2S
n-1,所以na
n+1-(n-1)a
n=2(S
n-S
n-1)=2a
n,故na
n+1=(n+1)a
n,由此能求出a
n.
法二:由na
n+1=2S
n及a
n+1=S
n+1-S
n,得nS
n+1=(n+2)S
n,故
=,由此能求出a
n.
(Ⅱ)依題意得
bn===-,由此能夠證明
Tn<.
解答:解:(Ⅰ)解法一:由na
n+1=2S
n①
得當(dāng)n≥2時(shí),(n-1)a
n=2S
n-1②,
由①-②可得,na
n+1-(n-1)a
n=2(S
n-S
n-1)=2a
n,
所以na
n+1=(n+1)a
n,
即當(dāng)n≥2時(shí),
=,
所以
=,=,=,…,=,
將上面各式兩邊分別相乘得,
=,
即
an=•a2(n≥3),
又a
2=2S
1=2a
1=2,所以a
n=n(n≥3),
此結(jié)果也滿足a
1,a
2,
故a
n=n對(duì)任意n∈N
+都成立.…(7分)
解法二:由na
n+1=2S
n及a
n+1=S
n+1-S
n,
得nS
n+1=(n+2)S
n,
即
=,
∴當(dāng)n≥2時(shí),
Sn=S1•••…•=1××××…×=(此式也適合S
1),
∴對(duì)任意正整數(shù)n均有
Sn=,
∴當(dāng)n≥2時(shí),a
n=S
n-S
n-1=n(此式也適合a
1),
故a
n=n.…(7分)
(Ⅱ)依題意可得
bn===- | | Tn=-+-+-+…+- | | =1+-- | =-| (n+1)2+(n+2)2 | | (n+1)2(n+2)2 | < |
| |
∴
Tn<.…(13分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法和不等式的證明.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.