分析 (1)通過a1=1、an+1an=n+1,分別計算出a2、a3、a4的值,即可比較大小;
(2)當(dāng)n=1時代入驗證;當(dāng)n≥2時,通過an•(an+1-an-1)=1可知$\frac{1}{{a}_{n}}$=an+1-an-1,求和后利用基本不等式即可.
解答 (1)解:∵a1=1,an+1an=n+1,
∴a2=2,a3=$\frac{3}{2}$,a4=$\frac{8}{3}$,
∴a4-a2=$\frac{8}{3}$-2=$\frac{2}{3}$,a3-a1=$\frac{3}{2}$-1=$\frac{1}{2}$,
∴a4-a2>a3-a1;
(2)證明:當(dāng)n≥2時,有anan-1=n,
∴an•(an+1-an-1)=1,
即$\frac{1}{{a}_{2}}$=a3-a1,$\frac{1}{{a}_{3}}$=a4-a2,…,$\frac{1}{{a}_{n-1}}$=an-an-2,$\frac{1}{{a}_{n}}$=an+1-an-1,
故$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$
=$\frac{1}{{a}_{1}}$+a3-a1+a4-a2+…+an-an-2+an+1-an-1
=$\frac{1}{{a}_{1}}$+an+1+an-a2-a1
=an+1+an-2
≥$2\sqrt{{a}_{n+1}{a}_{n}}$-2
=2($\sqrt{n+1}$-1);
經(jīng)檢驗知當(dāng)n=1時,$\frac{1}{{a}_{1}}$=1>2($\sqrt{2}$-1),
綜上所述,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$≥2($\sqrt{n+1}$-1).
點評 本題考查數(shù)列的遞推公式,基本不等式等知識,對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$+2 | B. | $\sqrt{5}$+1 | C. | $\sqrt{3}$+1 | D. | $\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com