| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
在平面直角坐標(biāo)系
中,已知圓心在第二象限、半徑為
的圓
與直線
相切
于坐標(biāo)原點(diǎn)
.橢圓
與圓
的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為
.
(1)求圓
的方程;
(2)試探究圓
上是否存在異于原點(diǎn)的點(diǎn)
,使
到橢圓右焦點(diǎn)F的距離等于
![]()
線段
的長(zhǎng).若存在,請(qǐng)求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系
中,已知圓心在直線
上,半徑為
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足
,求點(diǎn)P
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北黃岡市高三年級(jí)秋季期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
如圖,在半徑為
的圓
中,弦
、
相交于
,
,
,則圓心
到弦
的距離為 .
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省“皖西七!备呷昙(jí)聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn)
和
,圓
是以
為圓心,半徑為
的圓,點(diǎn)
是圓
上任意一點(diǎn),線段
的垂直平分線
和半徑
所在的直線交于點(diǎn)
.
(Ⅰ)當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程
;
(Ⅱ)已知
,
是曲線
上的兩點(diǎn),若曲線
上存在點(diǎn)
,滿足
(
為坐標(biāo)原點(diǎn)),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣州市高二第二學(xué)期期末考試數(shù)學(xué)(文)試題 題型:解答題
(本小題滿分14分)
在平面直角坐標(biāo)系
中,已知圓心在第二象限、半徑為
的圓
與直線
相切于坐標(biāo)原點(diǎn)
.橢圓E:![]()
與圓
的一個(gè)交點(diǎn)到橢圓E的兩焦點(diǎn)的距離之和為
.
(Ⅰ)求圓
和橢圓E的方程;
(Ⅱ)試探究圓
上是否存在異于原點(diǎn)的點(diǎn)
,使
到橢圓右焦點(diǎn)F的距離等于線段
的長(zhǎng).若存在,請(qǐng)求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com