如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙兩人這幾場比賽得分的中位數(shù)之和是![]()
| A.62 | B.63 | C.64 | D.65 |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的參數(shù)方程為![]()
是參數(shù)
,
是曲線
與
軸正半軸的交點.以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點
與曲線
只有一個公共點的直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P為半圓C:
(
為參數(shù),
)上的點,點A的坐標(biāo)為(1,0),
O為坐標(biāo)原點,點M在射線OP上,線段OM與C的弧
的長度均為
。
(Ⅰ)以O(shè)為極點,
軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo);
(Ⅱ)求直線AM的參數(shù)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的
、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程.
(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
有人收集了春節(jié)期間平均氣溫x與某取暖商品銷售額y的有關(guān)數(shù)據(jù)如下表:
| 平均氣溫(℃) | ﹣2 | ﹣3 | ﹣5 | ﹣6 |
| 銷售額(萬元) | 20 | 23 | 27 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
右表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對應(yīng)數(shù)據(jù).根據(jù)下表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為
=0.7x+0.35,那么表中t的值為( )
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | t | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某商品銷售量y(件)與銷售價格x(元/件)負(fù)相關(guān),則其回歸方程可能是 ( )
| A. | B. |
| C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖是2013年中央電視臺舉辦的挑戰(zhàn)主持人大賽上,七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為 ( )![]()
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)有一個回歸直線方程為
,則變量x增加一個單位時
| A.y平均增加1.5個單位 | B.y平均增加2個單位 |
| C.y平均減少1.5個單位 | D.y平均減少2個單位 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com