【題目】根據某電子商務平臺的調查統(tǒng)計顯示,參與調查的1 000位上網購物者的年齡情況如圖所示.
![]()
(1)已知[30,40),[40,50),[50,60)三個年齡段的上網購物者人數成等差數列,求a,b的值;
(2)該電子商務平臺將年齡在[30,50)內的人群定義為高消費人群,其他年齡段的人群定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現采用分層抽樣的方式從參與調查的1 000位上網購物者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此3人獲得代金券總和X(單位:元)的分布列與數學期望.
科目:高中數學 來源: 題型:
【題目】某種商品每件進價9元,售價20元,每天可賣出69件.若售價降低,銷售量可以增加,且售價降低
元時,每天多賣出的件數與
成正比.已知商品售價降低3元時,一天可多賣出36件.
(Ⅰ)試將該商品一天的銷售利潤表示成
的函數;(Ⅱ)該商品售價為多少元時一天的銷售利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明準備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學的數學知識制定一個方案來決定去哪個景點:(如圖)曲線
和直線
交于點
.以
為起點,再從曲線
上任取兩個點分別為終點得到兩個向量,記這兩個向量的數量積為
.若
去九寨溝;若
去泰山;若
去長白山;
去武夷山.
![]()
(1)若從
這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和不去泰山的概率;
(2)按上述方案,小明在曲線
上取點
作為向量的終點,則小明決定去武夷山.點
在曲線
上運動,若點
的坐標為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2-ax+ln(x+1)(a∈R).
(1)當a=2時,求函數f(x)的極值點;
(2)若函數f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實數a的取值范圍;
(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),證明數列{cn}是單調遞增數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等差數列,從a1,a2,a3,a4,a5,a6,a7中取走任意四項,則剩下三項構成等差數列的概率為( )
A.
B. ![]()
C.1或
D.1或![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系.
(1)將圓C和直線l的方程化為極坐標方程;
(2)P是l上的點,射線OP交圓C于點R,又點Q在OP上且滿足|OQ|·|OP|=|OR|2,當點P在l上移動時,求點Q軌跡的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節(jié)對同一類的
,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”;
乙說:“
作品獲得一等獎”;
丙說:“
,
兩項作品未獲得一等獎”;
丁說:“是
作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓
的上、下頂點分別為
,
,右焦點為
,點
在橢圓
上,且
.
![]()
(1)若點
坐標為
,求橢圓
的方程;
(2)延長
交橢圓
與點
,若直線
的斜率是直線
的斜率的3倍,求橢圓
的離心率;
(3)是否存在橢圓
,使直線
平分線段
?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com