![]()
(1)求證:AP⊥平面BDE;
(2)求證:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱錐P—ABC所成兩部分的體積比.
(1)證明:∵PC⊥底面ABC,BD
平面ABC,
∴PC⊥BD.
由AB=BC,D為AC的中點(diǎn),得BD⊥AC.又PC∩AC=C,∴BD⊥平面PAC.
又PA
平面PAC,∴BD⊥PA.由已知DE⊥PA,DE∩BD=D,
∴AP⊥平面BDE.
(2)證明:由BD⊥平面PAC,DE
平面PAC,得BD⊥DE.由D、F分別為AC、PC的中點(diǎn),得DF∥AP.
由已知,DE⊥AP,∴DE⊥DF.BD∩DF=D,∴DE⊥平面BDF.
又∵DE
平面BDE,∴平面BDE⊥平面BDF.
(3)解:設(shè)點(diǎn)E和點(diǎn)A到平面PBC的距離分別為h1和h2,則h1∶h2=EP∶AP=2∶3,
∴
.
故截面BEF分三棱錐P—ABC所成兩部分體積的比為1∶2或2∶1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 6 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com