【題目】某市醫(yī)療保險(xiǎn)實(shí)行定點(diǎn)醫(yī)療制度,按照“就近就醫(yī)、方便管理”的原則,參加保險(xiǎn)人員可自主選擇四家醫(yī)療保險(xiǎn)定點(diǎn)醫(yī)院和一家社區(qū)醫(yī)院作為本人就診的醫(yī)療機(jī)構(gòu).若甲、乙、丙、丁4名參加保險(xiǎn)人員所在地區(qū)附近有A,B,C三家社區(qū)醫(yī)院,并且他們的選擇是相互獨(dú)立的.
(Ⅰ)求甲、乙兩人都選擇A社區(qū)醫(yī)院的概率;
(Ⅱ)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;
(Ⅲ)設(shè)4名參加保險(xiǎn)人員中選擇A社區(qū)醫(yī)院的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
【答案】解:(Ⅰ)設(shè)“甲、乙兩人都選擇A社區(qū)醫(yī)院”為事件A,那么P(A)=
×
=
所以甲、乙兩人都選擇A社區(qū)醫(yī)院的概率為
.
(Ⅱ)設(shè)“甲、乙兩人選擇同一個(gè)社區(qū)醫(yī)院”為事件B,
由于有A,B,C三家社區(qū)醫(yī)院,所以P(B)=3×
×
=
所以甲、乙兩人不選擇同一個(gè)社區(qū)醫(yī)院的概率是P(
)=1﹣P(B)=
.
(Ⅲ)隨機(jī)變量ξ可能取的值為0,1,2,3,4.那么
P(ξ=0)=
=
; P(ξ=1)=
=
;
P(ξ=2)=
=
;P(ξ=3)=
=
;P(ξ=4)=
= ![]()
所以ξ的分布列為
ξ | 0 | 1 | 2 | 3 | 4 |
P |
|
|
|
|
|
Eξ=0×
+1×
+2×
+3×
+4×
= ![]()
【解析】(Ⅰ)設(shè)“甲、乙兩人都選擇A社區(qū)醫(yī)院”為事件A,由于他們的選擇是相互獨(dú)立,故利用乘法公式可求;(Ⅱ)先求甲、乙兩人選擇同一個(gè)社區(qū)醫(yī)院的事件的概率,再求甲、乙兩人不選擇同一個(gè)社區(qū)醫(yī)院的概率;(Ⅲ)確定隨機(jī)變量ξ可能取的值,計(jì)算相應(yīng)的概率,即可得到ξ的分布列與數(shù)學(xué)期望.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三棱臺(tái)的上、下底面的邊長(zhǎng)分別是3和6. ![]()
(1)若側(cè)面與底面所成的角為60°,求此三棱臺(tái)的體積;
(2)若側(cè)棱與底面所成的角為60°,求此三棱臺(tái)的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),若函數(shù)
的導(dǎo)函數(shù)
的圖象與
軸交于
,
兩點(diǎn),其橫坐標(biāo)分別為
,
,線段
的中點(diǎn)的橫坐標(biāo)為
,且
,
恰為函數(shù)
的零點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ![]()
(1)在給定直角坐標(biāo)系內(nèi)直接畫出f(x)的草圖(不用列表描點(diǎn)),并由圖象寫出函數(shù) f(x)的單調(diào)減區(qū)間; ![]()
(2)當(dāng)m為何值時(shí)f(x)+m=0有三個(gè)不同的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是y1 , y2萬(wàn)元,它們與投入資金x萬(wàn)元的關(guān)系分別為y1=m
+a,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1 , y2對(duì)應(yīng)的曲線C1 , C2如圖所示. ![]()
(1)求函數(shù)y1與y2的解析式;
(2)若該商場(chǎng)一共投資10萬(wàn)元經(jīng)銷甲、乙兩種商品,求該商場(chǎng)所獲利潤(rùn)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是(﹣∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x<0時(shí),函數(shù)的部分圖象如圖所示,則不等式xf(x)<0的解集是( ) ![]()
A.(﹣2,﹣1)∪(1,2)
B.(﹣2,﹣1)∪(0,1)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求
的方程;
(2)是否存在直線
與
相交于
兩點(diǎn),且滿足:①
與
(
為坐標(biāo)原點(diǎn))的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見(jiàn)》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選課意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.
![]()
圖中,課程
為人文類課程,課程
為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡(jiǎn)稱“組
”).
(Ⅰ)在“組
”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學(xué)營(yíng)活動(dòng),學(xué)校要求:參加活動(dòng)的學(xué)生只能是“組
”中選擇
課
程或
課程的同學(xué),并且這些同學(xué)以自愿報(bào)名繳費(fèi)的方式參加活動(dòng). 選擇
課程的學(xué)生中有
人參加科學(xué)營(yíng)活動(dòng),每人需繳納
元,選擇
課程的學(xué)生中有
人參加該活動(dòng),每人需繳納
元.記選擇
課程和
課程的學(xué)生自愿報(bào)名人數(shù)的情況為
,參加活動(dòng)的學(xué)生繳納費(fèi)用總和為
元.
①當(dāng)
時(shí),寫出
的所有可能取值;
②若選擇
課程的同學(xué)都參加科學(xué)營(yíng)活動(dòng),求
元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱
與四邊形BDEF相交于BD,
平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點(diǎn),
.
(I)求證:GM//平面CDE;
(II)求證:平面ACE⊥平面ACF.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com