【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市對全市一定年齡的市民進(jìn)行了漢字聽寫測試.為了調(diào)查被測試市民的基本情況,組織方從參加測試的市民中隨機(jī)抽取120名市民,按他們的年齡分組:第一組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
![]()
(1)若電視臺記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第1組市民中男性有3名,組織方要從第1組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性群眾的概率.
【答案】(1)0.25;(2)![]()
【解析】
(1)設(shè)第1組
的頻率為
,利用概率和為1,求出第1組的概率,把第4組加起來即可,
(2)設(shè)第1組
的頻數(shù)
,求出
,記第1組中的3名男性市民分別為
,
,
,3名女性市民分別為
,
,
,列出隨機(jī)抽取2名市民的基本事件,列出至少有1名女性的基本事件,然后求解至少有兩名女性的概率.
解:(1)設(shè)第1組
的頻率為
,則由題意可知,
,
被采訪人恰好在第1組或第4組的頻率為
,
∴估計被采訪人恰好在第1組或第4組的概率為0.25.
(2)第1組
的人數(shù)為
,∴第1組中共有6名市民,其中女性市民共3名,
記第1組中的3名男性市民分別為
,
,
,3名女性市民分別為
,
,
,
從第1組中隨機(jī)抽取2名市民組成宣傳隊(duì),共有15個基本事件,列舉如下:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
至少有1名女性
,
,
,
,
,
,
,
,
,
,
,
,共12個基本事件,
∴從第1組中隨機(jī)抽取2名市民組成宣傳隊(duì),至少有1名女性的概率為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(Ⅰ)若
,證明函數(shù)
有唯一的極小值點(diǎn);
(Ⅱ)設(shè)
且
,記函數(shù)
的最大值為M,求使得
的a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,若點(diǎn)A為函數(shù)
上的任意一點(diǎn),點(diǎn)B為函數(shù)
上的任意一點(diǎn).
(1)求A,B兩點(diǎn)之間距離的最小值;
(2)若A,B為函數(shù)
與函數(shù)
公切線的兩個切點(diǎn),求證:這樣的點(diǎn)B有且僅有兩個,且滿足條件的兩個點(diǎn)B的橫坐標(biāo)互為倒數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是
A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
是參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線
與曲線
交于
,
兩點(diǎn),與曲線
交于
,
兩點(diǎn),求
取最大值時
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,正方形
與梯形
所在的平面互相垂直,
,
,
,
.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)證明:對任意的
,存在唯一的
,使
;
(3)設(shè)(2)中所確定的
關(guān)于
的函數(shù)為
,證明:當(dāng)
時,有
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com