欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.若函數(shù)f(x)=lg(ax2-x+a)的值域是R,則實數(shù)a的取值范圍是[0,$\frac{1}{2}$].

分析 根據(jù)對數(shù)函數(shù)的值域便知函數(shù)ax2-x+a的值域為(0,+∞),可看出要討論a:a=0時,顯然-x的值域可以為(0,+∞),而a≠0時,ax2-x+a為二次函數(shù),從而有$\left\{\begin{array}{l}{a>0}\\{△≥0}\end{array}\right.$,從而這兩種情況下所得a的范圍求并集便可得出實數(shù)a的取值范圍.

解答 解:f(x)的值域為R;
∴ax2-x+a的值域為(0,+∞);
①若a=0,-x的值域可以為(0,+∞);
②若a≠0,則$\left\{\begin{array}{l}{a>0}\\{△=1-4{a}^{2}≥0}\end{array}\right.$;
解得$0<a≤\frac{1}{2}$;
∴實數(shù)a的取值范圍為$[0,\frac{1}{2}]$.
故答案為:$[0,\frac{1}{2}]$.

點評 考查函數(shù)值域的概念,對數(shù)函數(shù)的值域和定義域,要熟悉一次函數(shù)、二次函數(shù)的圖象,以及二次函數(shù)的取值和判別式△的關(guān)系,不要漏了a=0的情況.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知A={x|a≤x≤a+3},B={x|x<-1或x>5},若A∪B=B,則實數(shù)a的取值范圍是(-∞,-4)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知a、b、c分別為△ABC三個內(nèi)角A、B、C的對邊,且bsinA=$\sqrt{3}$acosB.
(1)求B;
(2)若b=3,sinC=2sinA,求a,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知λ∈R,函數(shù)$f(x)=\left\{{\begin{array}{l}{|{x+1}|,x<0}\\{lgx,x>0}\end{array}}\right.$g(x)=x2-4x+1+4λ,若關(guān)于x的方程f(g(x))=λ有6個解,則λ的取值范圍為( 。
A.$(0,\frac{2}{3})$B.$(\frac{1}{2},\frac{2}{3})$C.$(\frac{2}{5},\frac{1}{2})$D.$(0,\frac{2}{5})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知x+x-1=3,則代數(shù)式$\frac{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}}{{x}^{2}+{x}^{-2}}$的值是$\frac{\sqrt{5}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列雙曲線中,漸近線方程為y=±2x的是( 。
A.${x}^{2}-\frac{{y}^{2}}{4}=1$B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=cos(2x-$\frac{π}{2}$)+2cos2x,x∈R;
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.多項式(x-1)(x-2)(x-3)(x-4)(x-5)的展開式中,x4項的系數(shù)=-15,x項的系數(shù)=274.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5]
(Ⅰ)若y=f(x)在[-5,5]上是單調(diào)函數(shù),求實數(shù)a取值范圍.
(Ⅱ)求y=f(x)在區(qū)間[-5,5]上的最小值.

查看答案和解析>>

同步練習冊答案