分析 (1)由圖象可求T,利用周期公式可求$ω=\frac{2}{3}$,φ,即可求得函數(shù)解析式;
(2)由(1)及正弦函數(shù)的單調(diào)性即可求得單調(diào)遞增區(qū)間.
(3)由圖知x=$\frac{7}{4}$π時(shí),f(x)取最小值,結(jié)合函數(shù)的周期即可得解.
解答 解:(1)由圖象可知,$\frac{T}{2}=\frac{7π}{4}-\frac{π}{4}=\frac{3π}{2}$,
∴T=3π,$ω=\frac{2}{3}$,φ=$\frac{π}{3}$,
∴f(x)=sin($\frac{2}{3}x+\frac{π}{3}$).
(2)由(1)可知當(dāng)x=$\frac{7}{4}$π-3π=-$\frac{5}{4}$π時(shí),函數(shù)f(x)取最小值,
∴f(x)的單調(diào)遞增區(qū)間是[-$\frac{5π}{4}$+3kπ,$\frac{π}{4}$+3kπ](k∈Z).
(3)由圖知x=$\frac{7}{4}$π時(shí),f(x)取最小值,
又∵T=3π,∴當(dāng)x=$\frac{7}{4}$π+3kπ時(shí),f(x)取最小值.
所以f(x)取最小值時(shí)x的集合為:{x|x=$\frac{7π}{4}$+3kπ,k∈Z}.
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{\sqrt{7}}}{2}$ | B. | $\frac{7}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{{\sqrt{7}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com