分析 (1)由題意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{2}{3}}\\{\frac{1}{2}•2c•b=2\sqrt{5}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解出即可得出.
(2)設(shè)切點(diǎn)P(x0,y0),(x0>0).切線l的方程為:y-y0=-$\frac{{x}_{0}}{{y}_{0}}$(x-x0),A(x1,y1),B(x2,y2).${x}_{0}^{2}+{y}_{0}^{2}$=5.直線l的方程與橢圓方程聯(lián)立可得:$(5{y}_{0}^{2}+9{x}_{0}^{2})$x2-90x0x+225-45${y}_{0}^{2}$=0,利用根與系數(shù)的關(guān)系可得:|AB|=$\sqrt{(1+\frac{{x}_{0}^{2}}{{y}_{0}^{2}})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$,|AF2|=$\sqrt{{y}_{1}^{2}+({x}_{1}-2)^{2}}$,|BF2|=3-$\frac{2}{3}{x}_{2}$.即可得出△AF2B的周長(zhǎng)=|AF2|+|BF2|+|AB|.
解答 解:(1)由題意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{2}{3}}\\{\frac{1}{2}•2c•b=2\sqrt{5}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=3,c=2,b2=5.
∴橢圓C的方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$.
(2)設(shè)切點(diǎn)P(x0,y0),(x0>0).切線l的方程為:y-y0=-$\frac{{x}_{0}}{{y}_{0}}$(x-x0),A(x1,y1),B(x2,y2).
${x}_{0}^{2}+{y}_{0}^{2}$=5.
聯(lián)立$\left\{\begin{array}{l}{y=-\frac{{x}_{0}}{{y}_{0}}x+\frac{5}{{y}_{0}}}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,化為:$(5{y}_{0}^{2}+9{x}_{0}^{2})$x2-90x0x+225-45${y}_{0}^{2}$=0,
∴x1+x2=$\frac{90{x}_{0}}{5{y}_{0}^{2}+9{x}_{0}^{2}}$=$\frac{90{x}_{0}}{25+4{x}_{0}^{2}}$,x1x2=$\frac{225-45{y}_{0}^{2}}{5{y}_{0}^{2}+9{x}_{0}^{2}}$=$\frac{45{x}_{0}^{2}}{25+4{x}_{0}^{2}}$.
∴|AB|=$\sqrt{(1+\frac{{x}_{0}^{2}}{{y}_{0}^{2}})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{\frac{5}{{y}_{0}^{2}}[(\frac{90{x}_{0}}{25+4{x}_{0}^{2}})^{2}-\frac{180{x}_{0}^{2}}{25+4{x}_{0}^{2}}]}$=$\frac{60{x}_{0}}{25+4{x}_{0}^{2}}$
|AF2|=$\sqrt{{y}_{1}^{2}+({x}_{1}-2)^{2}}$=$\sqrt{5(1-\frac{{x}_{1}^{2}}{9})+({x}_{1}-2)^{2}}$=3-$\frac{2}{3}{x}_{1}$,
同理可得|BF2|=3-$\frac{2}{3}{x}_{2}$.
∴△AF2B的周長(zhǎng)=|AF2|+|BF2|+|AB|=3-$\frac{2}{3}{x}_{2}$+3-$\frac{2}{3}{x}_{1}$+$\frac{60{x}_{0}}{25+4{x}_{0}^{2}}$=6-$\frac{2}{3}$×$\frac{90{x}_{0}}{25+4{x}_{0}^{2}}$+$\frac{60{x}_{0}}{25+4{x}_{0}^{2}}$=6.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長(zhǎng)問(wèn)題、一元二次的方程的根與系數(shù)的關(guān)系、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于難題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -5 | B. | -1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $4\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 8個(gè) | B. | 9個(gè) | C. | 5個(gè) | D. | 6個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com