設函數(shù)

,判斷

在

上的單調(diào)性,并證明.
解:

在

上是減函數(shù).
證明:

,設

則:





在

上是減函數(shù).
本題主要考查函數(shù)單調(diào)性的判斷與證明,以及應用單調(diào)性求函數(shù)的最值,同時還考查了學生的變形,轉(zhuǎn)化能力,屬中檔題.
設出定義域內(nèi)任意兩個變量,且界定大小,再作差變形與零比較即可,要注意變形要到位.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
設

,則使冪函數(shù)

為奇函數(shù)且在

上單調(diào)遞增的a值的個數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
定義在R上的可導函數(shù)

滿足

,且當


,則

的大小關系是( )
A.

B.

C.

D.不確定
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)

如何取值時,函數(shù)

存在零點,并求出零點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知定義在

上的函數(shù)

滿足

,且

,

,若有窮數(shù)列

(

)的前

項和等于

,則

等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設f (x)是奇函數(shù),且在(0,+∞)上是增函數(shù),又f (-3)=0,則x·f (x)<0的解集為
| A.{x∣-3<x<0或x>3} |
| B.{x∣x<-3或0<x<3} |
| C.{x∣x<-3或x>3} |
| D.{x∣-3<x<0或0<x<3} |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列各組函數(shù)中的兩個函數(shù)是相等函數(shù)的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設集合

為方程

的解集,集合

為方程

的解集,

,求

。(12分)
查看答案和解析>>