【題目】已知
是單調(diào)遞增的等差數(shù)列,首項
,前
項和為
,數(shù)列
是等比數(shù)列,首項
,且
.
(1)求數(shù)列
和
的通項公式;
(2)設(shè)
,求數(shù)列
的前
項和
;
【答案】
(1)解:設(shè)數(shù)列
的公差為
,數(shù)列
的公比為 ![]()
則由題意得: ![]()
解得:
或 ![]()
時單調(diào)遞增的等差數(shù)列,
,
,
![]()
(2)解: ![]()
則 ![]()
又 ![]()
![]()
,
![]()
【解析】(1)根據(jù)題意列出關(guān)于公差與公比的方程組,進而求得兩個數(shù)列的通項公式;(2)根據(jù)(1)表示出數(shù)列
的通項公式,再根據(jù)數(shù)列特征利用
求得其前n項和.
【考點精析】本題主要考查了等差數(shù)列的通項公式(及其變式)和等比數(shù)列的通項公式(及其變式)的相關(guān)知識點,需要掌握通項公式:
或
;通項公式:
才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號碼之和小于4”的概率.
(3)求事件B=“編號X<Y”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x3+3x2﹣12x+5. (Ⅰ)求曲線y=f(x)在點(0,5)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣1,0),B(1,0),直線AM與直線BM相交于點M,直線AM與直線BM的斜率分別記為kAM與kBM , 且kAMkBM=﹣2 (Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過定點F(0,1)作直線PQ與曲線C交于P,Q兩點,△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,
平面
,
∥
,
,![]()
(1)求證:
平面 ![]()
(2)求證:平面
平面 ![]()
(3)設(shè)點
為
中點,在棱
上是否存在點
,使得
∥平面
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,已知 ![]()
(Ⅰ)求sinC的值;
(Ⅱ)當a=2,2sinA=sinC時,求b及c的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
的公差
,它的前
項和為
,若
,且
成等比數(shù)列.
(1)求數(shù)列
的通項公式
及前
項和
;
(2)令
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標系,⊙C的極坐標方程為ρ=2
sinθ. (Ⅰ)寫出⊙C的直角坐標方程;
(Ⅱ)P為直線l上一動點,當P到圓心C的距離最小時,求P的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=1,前n項和為Sn , 且滿足(n+1)an=2Sn(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=ancos(πan),求數(shù)列{bn)的前n項和Tn .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com