欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖所示.已知E、F、G、H分別是四邊形ABCD各邊的中點.若EG⊥FH,求證:AC=BD.

分析 根據(jù)三角形中位線定理,可得EF∥AC∥HG,EH∥BD∥FG,進(jìn)而得到四邊形EFGH為平行四邊形,再由對角線互相垂直,得到四邊形EFGH為菱形,進(jìn)而得到答案.

解答 證明:∵E、F、G、H分別是四邊形ABCD各邊的中點.
∴EF∥AC∥HG,EH∥BD∥FG,
故四邊形EFGH為平行四邊形,
又∵EG⊥FH,
故四邊形EFGH為菱形,
∴EF=FG.
又∵EF=$\frac{1}{2}$AC,F(xiàn)G=$\frac{1}{2}$BD.
∴AC=BD.

點評 本題考查的知識點是三角形中位線定理,平行四邊形的判定與性質(zhì),菱形的判定與性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知P(x0,y0)(x0≠±a)是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點,M,N分別是橢圓E的左右頂點,直線PM、PN的斜率之積為-$\frac{1}{5}$.
(1)求橢圓E的離心率;
(2)過橢圓E的左焦點F1的直線交橢圓E于A、B兩點,F(xiàn)2為橢圓E的右焦點,試求△AF2B的內(nèi)切圓半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.姜堰某化學(xué)試劑廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是$5x+1-\frac{3}{x}$千元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得利潤不低于30千元,求x的取值范圍;
(2)要使生產(chǎn)120千克該產(chǎn)品獲得的利潤最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知等比數(shù)列{an}的公比q=$\frac{1}{3}$,且a1+a3+…+a199=180,則a2+a4+…+a200=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知某公司準(zhǔn)備投資一個項目,為慎重起見,該公司提前制定了兩套方案,并召集了各部門的經(jīng)理對這兩套方案進(jìn)行研討,并對認(rèn)為合理的方案進(jìn)行了投票表決,統(tǒng)計結(jié)果如莖葉圖所示,試說明方案比較穩(wěn)妥的是第一套方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.平面上三個力$\overrightarrow{{F}_{1}}$,$\overrightarrow{{F}_{2}}$,$\overrightarrow{{F}_{3}}$作用于一點且處于平衡狀態(tài),已知|$\overrightarrow{{F}_{1}}$|=1N,|$\overrightarrow{{F}_{2}}$|=2N,$\overrightarrow{{F}_{1}}$,$\overrightarrow{{F}_{2}}$成120°角,則力$\overrightarrow{{F}_{1}}$與$\overrightarrow{{F}_{3}}$所成的角為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.比較下列各組數(shù)的大。
(1)sin$\frac{π}{4}$和sin$\frac{2π}{3}$;
(2)sin(-$\frac{π}{18}$)和sin(-$\frac{π}{10}$);
(3)sin$\frac{21π}{5}$和sin$\frac{42π}{5}$;
(4)sin194°和cos160°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=x5-ax3+bx-6,f(-2)=10,則f(2)=-22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x>0時,f(x)=log2(x2+2).
(1)求f(x)得解析式及值域:
(2)若f(a+1+4x)+f(a•2x)>0恒成立,求a得取值范圍.

查看答案和解析>>

同步練習(xí)冊答案