| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
分析 化簡兩個函數(shù)的表達式為正弦函數(shù)的形式,按照平移的方法平移,即可得到m的最小值.
解答 解:∵函數(shù)f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),g(x)=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$),
所以函數(shù)f(x)至少向右平移$\frac{π}{2}$個單位,可得f(x-$\frac{π}{2}$)=$\sqrt{2}$sin(x-$\frac{π}{2}$+$\frac{π}{4}$)=$\sqrt{2}$sin(x-$\frac{π}{4}$)=g(x),
即m的最小值為:$\frac{π}{2}$.
故選:C.
點評 本題考查兩角和的正弦函數(shù)以及三角函數(shù)圖象的平移,考查計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x-y+1≤0}\\{x+y-5≤0}\\{x≥1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-5≤0}\\{x≥1}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-5≥0}\\{x≤1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x-y+1≤0}\\{x+y-5≤0}\\{x≤1}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一實數(shù)λ使$\overrightarrow{a}$=λ$\overrightarrow$ | |
| B. | 已知向量$\overrightarrow{a}$,$\overrightarrow$為非零向量,則“$\overrightarrow{a}$,$\overrightarrow$的夾角為鈍角”的充要條件是“$\overrightarrow{a}$•$\overrightarrow$<0” | |
| C. | 若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1>0 | |
| D. | “若θ=$\frac{π}{3}$,則cosθ=$\frac{1}{2}$”的否命題為“若θ≠$\frac{π}{3}$,則cosθ$≠\frac{1}{2}$” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 21 | B. | 35 | C. | 56 | D. | 210 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com