欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.函數(shù)f(x)=x2-8lnx的單調(diào)遞減區(qū)間為( 。
A.[2,+∞)B.(-∞,2]C.(0,2]D.(-2,2)

分析 由f′(x)≤0,解得x范圍即可得出.

解答 解:f′(x)=2x-$\frac{8}{x}$=$\frac{2(x+2)(x-2)}{x}$(x>0).
由f′(x)≤0,解得0<x≤2.
∴函數(shù)f(x)=x2-8lnx的單調(diào)遞減區(qū)間為(0,2].
故選:C.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某種商品價(jià)格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:
 價(jià)格x(元/kg) 10 15 20 25 30
 日需求量y(kg) 11 10 8 6 5
(1)求y關(guān)于x的線性回歸方程
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=35元/kg時(shí),日需求量y的預(yù)測值為多少?
參考公式:線性回歸方程$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$$-b\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.1B.2C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=xlnx(x>0).
(1)求函數(shù)f(x)的最小值;
(2)f′(x)為f(x)的導(dǎo)函數(shù),設(shè)F(x)=ax2+f′(x)(a∈R),討論函數(shù)F(x)的單調(diào)性;
(3)若斜率為k的直線與曲線y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)兩點(diǎn),求證:${x}_{1}<\frac{1}{k}<{x}_{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,已知點(diǎn)P($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),將向量$\overrightarrow{OP}$繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)x弧度得到向量$\overrightarrow{OQ}$.
(1)若x=$\frac{π}{4}$,求點(diǎn)Q坐標(biāo);
(2)已知函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,且f(α)•f(α-$\frac{π}{3}$)=$\frac{1+\sqrt{3}}{4}$,若α∈(0,π),求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知偶函數(shù)f(x)的導(dǎo)數(shù)為f′(x)(x∈R),且在[0,+∞)上滿足f′(x)<x3,若f(m-3)-f(m)≥$\frac{1}{4}$[(m-3)4-m4],則實(shí)數(shù)m的取值范圍為[$\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,根據(jù)下列條件解三角形,其中有兩個(gè)解的是( 。
A.a=8,b=16,A=30°B.b=18,c=20,B=60°C.a=15,b=2,A=90°D.a=4,b=3,A=120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x-${e^{\frac{x}{a}}}$存在單調(diào)遞減區(qū)間,且y=f(x)的圖象在x=0處的切線l與曲線y=ex相切,符合情況的切線l有0條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=aex-$\frac{1}{2}$x2-x(a∈R).
(1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線與y軸垂直,求a的值;
(2)若函數(shù)f(x)有兩個(gè)極值點(diǎn),求a的取值范圍;
(3)證明:當(dāng)x>1時(shí),exlnx>x-$\frac{1}{x}$.

查看答案和解析>>

同步練習(xí)冊答案