分析 (1)根據(jù)函數(shù)奇偶性的定義建立方程進(jìn)行求解即可.
(2)根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化求解即可.
解答 解:(1)∵g(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是定義在R上的奇函數(shù),
∴由g(0)=0得1-a=0,得a=1,
則g(x)=$\frac{{4}^{x}-1}{{2}^{x}}$,經(jīng)檢驗(yàn)g(x)是奇函數(shù),
由f(-1)=f(1)得lg(10-1+1)-b=lg(10+1)+b,
即2b=lg($\frac{11}{10}$×$\frac{1}{11}$)=lg($\frac{1}{10}$)=-1,
即b=-$\frac{1}{2}$,則f(x)=lg(10x+1)-$\frac{1}{2}$x,經(jīng)檢驗(yàn)f(x)是偶函數(shù)
∴a+b=$\frac{1}{2}$ …(5分)(未說(shuō)明檢驗(yàn)的扣1分)
(2)∵g(x)=$\frac{{4}^{x}-1}{{2}^{x}}$=2x-$\frac{1}{{2}^{x}}$,且g(x)在(-∞,+∞)單調(diào)遞增,且g(x)為奇函數(shù).
∴由g(t2-2t)+g(2t2-k)>0恒成立,得
g(t2-2t)>-g(2t2-k)=g(-2t2+k),…(7分)
∴t2-2t>-2t2+k,在t∈[0,+∞)上恒成立
即3t2-2t>k,在t∈[0,+∞)上恒成立…(9分)
令F(x)=3t2-2t,在[0,+∞)的最小值為F($\frac{1}{3}$)=-$\frac{1}{3}$…(11分)
∴k<$-\frac{1}{3}$…(12分)
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,以及不等式恒成立問(wèn)題,根據(jù)條件建立方程求出a,b的值以及利用函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 0或有無(wú)數(shù)多個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {-1,0,1} | B. | {x|-1≤x≤1} | C. | {-1,0} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {-1,3} | B. | {-1,1} | C. | (1,3) | D. | {-1,+∞} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1或9 | B. | 6 | C. | 9 | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (2,+∞) | B. | (-∞,2) | C. | (3,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com