分析 (1)根據(jù)圓M的標準方程得到點M坐標(-1,0),圓的半徑R=4,再由線段中垂線定理,可得出點Q的軌跡C是橢圓,從而可得出點G的軌跡C對應的橢圓的標準方程;
(2)設直線l的方程為y=kx+2,聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2+16kx+4=0,由此利用根的判別式、韋達定理、向量知識,結合已知條件能求出直線AB的斜率k的取值范圍.
解答 解:(1)∵圓F1:(x+1)2+y2=16,圓心為F1,∴F1(-1,0),
∵P為圓F1上一點,線段PF2的上一點N滿足$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{N{F}_{2}}$,直線PF1上一點Q,滿足$\overrightarrow{QN}$•$\overrightarrow{P{F}_{2}}$=0
∴QN是PF2的垂直平分線,根據(jù)題設有|QP|=|QF2|,|F1P|=4,
∴|QF1|+|QF2|=|QF1|+|QP|=|F1P|=4,
∵|F1F2|=2<4,
∴根據(jù)橢圓的定義可知,Q的軌跡為以F1(-1,0),F(xiàn)2(1,0)為焦點中心在原點半長軸為2,
半焦距為1,半短軸為$\sqrt{3}$的橢圓,
∴點Q的軌跡C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)由題意知直線l的斜率存在,設其方程為y=kx+2,
聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2+16kx+4=0,
設直線l與曲線C交于不同的兩點A(x1,y1),B(x2,y2),
則△=256k2-16(3+4k2)>0,解得k2>$\frac{1}{4}$,即k>$\frac{1}{2}$或k<-$\frac{1}{2}$,
${x}_{1}{+x}_{2}=-\frac{16k}{3+4{k}^{2}}$,x1x2=$\frac{4}{3+4{k}^{2}}$,
∴y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,
∵∠AOB<90°,∴$\overrightarrow{OA}•\overrightarrow{OB}$>0,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=(k2+1)•$\frac{4}{3+4{k}^{2}}$+2k•(-$\frac{16k}{3+4{k}^{2}}$)+4>0,
解得-$\frac{2\sqrt{3}}{3}$<k<$\frac{2\sqrt{3}}{3}$
∴直線AB的斜率k的取值范圍是(-$\frac{2\sqrt{3}}{3}$,-$\frac{1}{2}$)∪($\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$).
點評 本題借助一個動點的軌跡,得到橢圓的第一定義,進而求出其軌跡方程,考查向量知識的運用,考查直線的斜率的取值范圍的計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $1+\sqrt{3}$ | B. | $2+\sqrt{3}$ | C. | $12+6\sqrt{3}$ | D. | $4+2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {0,1,2} | B. | {0,1,2,3} | C. | {-1,0,1,2} | D. | {-1,0,1,2,3} |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com