用數(shù)學(xué)歸納法證明an+1+(a+1)2n-1能被a2+a+1整除(n∈N*).
證明:① 當(dāng)n=1時,a2+(a+1)=a2+a+1可被a2+a+1整除.
② 假設(shè)n=k(k∈N*)時,ak+1+(a+1)2k-1能被a2+a+1整除,則當(dāng)n=k+1時,ak+2+(a+1)2k+1=a·ak+1+(a+1)2(a+1)2k-1=a·ak+1+a·(a+1)2k-1+(a2+a+1)(a+1)2k-1=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,由假設(shè)可知a[ak+1+(a+1)2k-1]能被a2+a+1整除,(a2+a+1)(a+1)2k-1也能被a2+a+1整除,∴ ak+2+(a+1)2k+1能被a2+a+1整除,即n=k+1時命題也成立,
∴ 對任意n∈N*原命題成立.
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:
=1(a>b>0)經(jīng)過點M(-2,-1),離心率為
.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.
(1) 求橢圓C的方程;
(2) 試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若等差數(shù)列{an}的公差為d,前n項的和為Sn,則數(shù)列
為等差數(shù)列,公差為
.類似地,若各項均為正數(shù)的等比數(shù)列{bn}的公比為q,前n項的積為Tn,則數(shù)列{
}為等比數(shù)列,公比為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
用數(shù)學(xué)歸納法證明“當(dāng)n為正偶數(shù)時xn-yn能被x+y整除”第一步應(yīng)驗證n=________時,命題成立;第二步歸納假設(shè)成立應(yīng)寫成____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,
(k∈N*)時,an=(-1)k-1k,記Sn=a1+a2+…+an(n∈N*),用數(shù)學(xué)歸納法證明Si(2i+1)=-i(2i+1)(i∈N*).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com