分析 先根據(jù)直角距離的定義分別表示出所求的問題的表達(dá)式,然后根據(jù)集合中絕對值的性質(zhì)進(jìn)行判定即可.
解答 解:①已知P(1,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)=|1-sin2α|+|3-cos2α|=cos2α+2+sin2α=3為定值,正確;
②設(shè)P(x,y),O(0,0),則d(0,P)=|x1-x2|+|y1-y2|=|x|+|y|=|x|+|x+1|,表示數(shù)軸上的x到1和0的距離之和,其最小值為1,故不正確;
③若|PQ|表示P、Q兩點(diǎn)間的距離,那么|PQ|=$\sqrt{{(x}_{1}-{x}_{2})^{2}+{(y}_{1}-{y}_{2})^{2}}$,d(P,Q)=|x1-x2|+|y1-y2|,因?yàn)?(a2+b2)≥(a+b)2,所以|PQ|≥$\frac{\sqrt{2}}{2}$d(P,Q),正確;
④過P(1,3)與Q(5,7)的直線方程為y=x+2,點(diǎn)A到點(diǎn)P與Q的“直角距離”之和等于8,則|x-1|+|y-3|+|x-5|+|y-7|=2|x-1|+2|x-5|=8,所以|x-1|+|x-5|=4,所以1≤x≤5,
因?yàn)閤∈Z,所以x=1,2,3,4,5,所以滿足條件的點(diǎn)A只有5個(gè),正確.
故答案為:①③④.
點(diǎn)評 本題考查兩點(diǎn)之間的“直角距離”的定義,絕對值的意義,關(guān)鍵是明確P(x1,y1)、Q(x2,y2)兩點(diǎn)之間的“直角距離”的含義.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①② | B. | ①③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2016 | B. | 2015 | C. | 2014 | D. | 1007.5 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com