若函數(shù)f(x)滿足
f(+1)=x+2,則f(x)=
x2-1,x≥1
x2-1,x≥1
.
分析:函數(shù)f(x)滿足
f(+1)=x+2,令
+1=t,t≥1,則
=t-1,所以f(t)=(t-1)
2+2t=t
2+1,由此能求出f(x).
解答:解:∵函數(shù)f(x)滿足
f(+1)=x+2,
令
+1=t,t≥1,則
=t-1,
∴f(t)=(t-1)
2+2(t-1)=t
2-1,
∴f(x)=x
2-1,x≥1.
故答案為:x
2-1,x≥1.
點評:本題考查函數(shù)的解析式的求法和常用方法,是基礎題,解題時要認真審題,注意求解析式常規(guī)方法的合理運用.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:2012-2013學年湖北省荊州中學高三(上)第一次質(zhì)量檢測數(shù)學試卷 (理科)(解析版)
題型:選擇題
已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0
查看答案和解析>>
科目:高中數(shù)學
來源:2012-2013學年河南省洛陽一中高三(上)期中數(shù)學考前選擇題強化訓練(解析版)
題型:選擇題
已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0
查看答案和解析>>
科目:高中數(shù)學
來源:2012-2013學年湖北省荊州中學高三(上)第一次質(zhì)量檢測數(shù)學試卷 (文科)(解析版)
題型:選擇題
已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0
查看答案和解析>>
科目:高中數(shù)學
來源:2011-2012學年湖南省湘西州邊城高級中學高三(上)月考數(shù)學試卷(解析版)
題型:選擇題
已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0
查看答案和解析>>
科目:高中數(shù)學
來源:2010-2011學年湖南省湘西州古丈縣補習學校高三(上)第一次月考數(shù)學試卷(理科)(解析版)
題型:選擇題
已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0
查看答案和解析>>