欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知函數(shù)f(x)=$\frac{lnx+a}{x}$(a∈R),f′(1)=0.
(1)求實(shí)數(shù)a的值;
(2)證明當(dāng)x≥1時(shí),f(x)≤1.

分析 (1)先確定函數(shù)f(x)的定義域,再求導(dǎo)$f'(x)=\frac{1-lnx-a}{x^2}$,從而得$\frac{1-ln1-a}{1}=0$,從而解得;
(2)由題意,f(x)≤1等價(jià)于lnx+1≤x;從而令h(x)=x-lnx-1,從而轉(zhuǎn)化為函數(shù)的最值問題即可.

解答 解:(1)函數(shù)f(x)的定義域?yàn)閧x|x>0},
$f'(x)=\frac{1-lnx-a}{x^2}$,
又∵f′(1)=0,
∴$\frac{1-ln1-a}{1}=0$,
∴a=1.
(2)證明:∵x≥1,
∴f(x)≤1等價(jià)于lnx+1≤x;
令h(x)=x-lnx-1,則$h'(x)=\frac{x-1}{x}$,
∵x≥1,
∴h′(x)≥0,
故h(x)在[1,+∞)上單調(diào)遞增,
則當(dāng)x≥1時(shí),h(x)≥h(1)=0,
即lnx+1≤x成立.
∴當(dāng)x≥1時(shí),f(x)≤1.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及恒成立問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某學(xué)校組織知識(shí)測(cè)試,設(shè)置A、B、C三組測(cè)試項(xiàng)目供參賽同學(xué)選擇.甲、乙、丙三名同學(xué)參加比賽,其中甲參加A組測(cè)試,甲通過測(cè)試的概率為$\frac{1}{3}$;乙參加B組測(cè)試,乙通過測(cè)試的概率為$\frac{1}{2}$;丙參加C組測(cè)試,C組共有6道試題,丙只能答對(duì)其中4道題.根據(jù)規(guī)則,丙只能且必須選擇4道題作答,至少答對(duì)3道才能通過測(cè)試.
(Ⅰ)求丙通過測(cè)試的概率;
(Ⅱ)記A、B、C三組通過測(cè)試的總?cè)藬?shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)F1,F(xiàn)2分別為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A為橢圓E的左頂點(diǎn),點(diǎn)B為橢圓E 的上頂點(diǎn),且|AB|=2.
(1)若橢圓E 的離心率為$\frac{\sqrt{6}}{3}$,求橢圓E 的方程;
(2)設(shè)P 為橢圓E 上一點(diǎn),且在第一象限內(nèi),直線F2P與y 軸相交于點(diǎn)Q,若以PQ 為直徑的圓經(jīng)過點(diǎn)F1,證明:|OP|>$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=2x3-3x2-12x+5在[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=xlnx.
(Ⅰ)求f(x)的單調(diào)區(qū)間及最小值;
(Ⅱ)f(x)≥$\frac{ax-1}{2}$在(0,+∞)上恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,PA⊥底面ABCD,∠PCD=90°,PA=AB=AC=2
(I)求證:AC⊥CD;
(Ⅱ)點(diǎn)E在棱PC的中點(diǎn),求點(diǎn)B到平面EAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=2x3-3x2-12x,則f(x)在區(qū)間[-2,1]上的取值范圍是( 。
A.[-13,-4]B.[-20,7]C.[-4,7]D.[-13,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)F1,F(xiàn)2,D為橢圓上任意一點(diǎn),△DF1F2面積的最大值為1,橢圓離心率為$\frac{\sqrt{2}}{2}$
(1)求橢圓E的方程;
(2)設(shè)T為直線x=2上任意一點(diǎn),過右焦點(diǎn)F2作直線TF2的垂線交橢圓E于點(diǎn)P,Q,線段PQ中點(diǎn)為N,證明:O,N,T三點(diǎn)共線(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2x3+ax2+bx+3在x=-1和x=2處都取得極值.
(1)求f(x)的表達(dá)式和極值;
(2)若f(x)=m有三個(gè)根,求m的取值范圍;
(3)若f(x)在區(qū)間[m,m+4]上是單調(diào)函數(shù),求m的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案