欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.如圖,AB是圓的直徑,PA垂直于圓所在的平面,C是圓上的一點(diǎn),
E,F(xiàn)分別為PA,PC的中點(diǎn).
(1)求證:EF∥平面ABC
(2)求證:BC⊥平面PAC.

分析 (1)推導(dǎo)出EF∥AC,由此能證明EF∥平面ABC.
(2)推導(dǎo)出BC⊥PA,BC⊥AC,由此能證明BC⊥平面PAC.

解答 證明:(1)∵E,F(xiàn)分別為PA,PC的中點(diǎn),
∴EF∥AC,
∵EF?平面ABC,AC?平面ABC,
∴EF∥平面ABC.
(2)∵AB是圓的直徑,PA垂直于圓所在的平面,C是圓上的一點(diǎn),
∴BC⊥PA,BC⊥AC,
∵PA∩AC=A,
∴BC⊥平面PAC.

點(diǎn)評(píng) 本題考查線面平面、線面垂直的證明,考查空間中線線、線面、面面間的關(guān)系等基礎(chǔ)知識(shí),考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)F1,F(xiàn)2分別為橢圓${C_1}:\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$(a1>b1>0)與雙曲線${C_2}:\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1$(a2>b2>0)的公共焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,$∠{F_1}M{F_2}={90^0}$,若橢圓的離心率${e_1}∈[\frac{3}{4},\frac{{2\sqrt{2}}}{3}]$,則雙曲線C2的離心率e2的取值范圍為$[\frac{{2\sqrt{14}}}{7},\sqrt{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}-2n+3$,求其通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,a1=-2,2an+1=2an+3,則an﹦$\frac{3}{2}n$-$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-ax2-x.
(1)若a=$\frac{1}{2}$,令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}(2b-1)•{3^x}-b,x>0\\-{x^2}+(2-b)x,x≤0\end{array}$在R上為增函數(shù),則實(shí)數(shù)b的取值范圍為( 。
A.$(\frac{1}{2},2]$B.[1,2]C.(1,2]D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)f(x)設(shè)為偶函數(shù),且在(-∞,0)內(nèi)是減函數(shù),f(-3)=0,則不等式f(x)<0的解集為(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a∈R,函數(shù)f(x)=ex+ae-x,其導(dǎo)函數(shù)f'(x)是奇函數(shù).若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則切點(diǎn)的坐標(biāo)為$(ln2,\frac{5}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=ln(x2-2x-8)的單調(diào)遞減區(qū)間是( 。
A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案