【題目】若函數(shù)f(x)滿足對任意的兩個(gè)不相等的正數(shù)x1 , x2 , 下列三個(gè)式子:f(x1﹣x2)+f(x2﹣x1)=0,(x1﹣x2)(f(x1)﹣f(x2))<0,f(
)>
都恒成立,則f(x)可能是( )
A.f(x)= ![]()
B.f(x)=﹣x2
C.f(x)=﹣tanx
D.f(x)=|sinx|
【答案】A
【解析】解:∵函數(shù)f(x)滿足對任意的兩個(gè)不相等的正數(shù)x1,x2,
f(x1﹣x2)+f(x2﹣x1)=0,(x1﹣x2)(f(x1)﹣f(x2))<0,
∴f(x)是奇函數(shù),且在(0,+∞)上是減函數(shù),
∴選項(xiàng)B和選項(xiàng)D不成立,
∵f(
)>
,
在A中,f(x)=
,
f(
)=
,
=
=
,
∵(x1+x2)2=
>4x1x2,
∴f(
)>
,故A成立;
在C中,f(x)=﹣tanx,
f(
)=﹣tan
,
=
=﹣
(tanx1+tanx2),
取
,x2=
,得f(
)=f(
)=﹣tan
=﹣1,
=
=﹣
(tanx1+tanx2)=﹣1,
此時(shí),f(
)=
,故C不成立.
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的值的相關(guān)知識可以得到問題的答案,需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意實(shí)數(shù)x,y均有f(x)=f(
)+f(
).當(dāng)x>0時(shí),f(x)>0
(1)判斷函數(shù)f(x)在R上的單調(diào)性并證明;
(2)設(shè)函數(shù)g(x)與函數(shù)f(x)的奇偶性相同,當(dāng)x≥0時(shí),g(x)=|x﹣m|﹣m(m>0),若對任意x∈R,不等式g(x﹣1)≤g(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ln
,則f(x)是( )
A.奇函數(shù),且在(0,+∞)上單調(diào)遞減
B.奇函數(shù),且在(0,+∞)上單凋遞增
C.偶函數(shù),且在(0,+∞)上單調(diào)遞減
D.偶函數(shù),且在(0,+∞)上單凋遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體內(nèi)有一四面體A﹣BCD,其中B,C分別為正方體兩條棱的中點(diǎn),其三視圖如圖所示,則四面體A﹣BCD的體積為( ) ![]()
A.![]()
B.2
C.![]()
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點(diǎn).求證: ![]()
(1)C1O∥面AB1D1;
(2)面OC1D∥面AB1D1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內(nèi),當(dāng)x=
時(shí),f(x)取得最大值3,當(dāng)x=﹣
時(shí),f(x)取得最小值﹣3. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E為棱CC1上的動(dòng)點(diǎn). ![]()
(1)若E為棱CC1的中點(diǎn),求證:A1E⊥平面BDE;
(2)試確定E點(diǎn)的位置使直線A1C與平面BDE所成角的正弦值是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程
=1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com