欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知等差數(shù)列an是遞增數(shù)列,且滿足a5=3,S6=12.
(1)求數(shù)列an的通項(xiàng)公式;
(2)令bn=
1
anan+1
,數(shù)列bn的前n項(xiàng)和Sn,若存在整數(shù)t,使Sn≤t對(duì)任意自然數(shù)n∈N*恒成立,求t的最小值.
(1)根據(jù)題意:
a1+4d=3
6a1+15d=12
,解得
a1=
1
3
d=
2
3
,(3分)
故等差數(shù)列{an}的通項(xiàng)公式為an=a1+(n-1)•d=
2n-1
3
(6分)
(2)bn=
1
anan+1
=
1
2n-1
3
• 
2n+1
3
=
9
(2n-1)(2n+1)
=
9
2
1
2n-1
-
1
2n+1
),
Sn=
9
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]=
9
2
[(1-
1
2n+1
)]=
9
2
(1-
1
2n+1
)<
9
2
(12分)
∵t是整數(shù),∴t的最小值是5.(15分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和Sn=
n2
•a

(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n0和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列bn的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,求證:數(shù)列bn是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省廈門市思明區(qū)科技中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和
(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n(n≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省廈門市思明區(qū)科技中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和;
(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n(n≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新課標(biāo)高三(上)數(shù)學(xué)一輪復(fù)習(xí)單元驗(yàn)收5(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項(xiàng)和
(3)已知有窮等差數(shù)列{cn}的項(xiàng)數(shù)是n(n≥3),所有項(xiàng)之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案