| A. | e | B. | 2 | C. | 1 | D. | $\frac{e}{2}$ |
分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)f(x)的值域,問(wèn)題轉(zhuǎn)化為即[1,+∞)⊆[$\frac{a}{2}$,+∞),得到關(guān)于a的不等式,求出a的最大值即可.
解答 解:f(x)=$\frac{1}{e}•{e^x}+\frac{a}{2}{x^2}$-(a+1)x+a(a>0),
f′(x)=$\frac{1}{e}$•ex+ax-(a+1),a>0,
則x<1時(shí),f′(x)<0,f(x)遞減,
x>1時(shí),f′(x)>0,f(x)遞增,
而x→+∞時(shí),f(x)→+∞,f(1)=$\frac{a}{2}$,
即f(x)的值域是[$\frac{a}{2}$,+∞),恒大于0,
而f[f(x)]的值域是[$\frac{a}{2}$,+∞),
則要求f(x)的范圍包含[1,+∞),
即[1,+∞)⊆[$\frac{a}{2}$,+∞),
故$\frac{a}{2}$≤1,解得:a≤2,
故a的最大值是2,
故選:B.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、值域問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,考查集合的包含關(guān)系,是一道中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| 選擇自然科學(xué)類(lèi) | 選擇社會(huì)科學(xué)類(lèi) | 合計(jì) | |
| 男生 | 60 | 45 | 105 |
| 女生 | 30 | 45 | 75 |
| 合計(jì) | 90 | 90 | 180 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{6}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 奇函數(shù) | B. | 偶函數(shù) | ||
| C. | 非奇非偶函數(shù) | D. | 既是奇函數(shù)又是偶函數(shù) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com