欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設a>0.R上的偶函數(shù),

(1)求a的值;

(2)證明f(x)在(0,+∞)上為增函數(shù).

答案:略
解析:

(1)R上的偶函數(shù)

f(x)f(x)=0.∴

不可能恒等于零,

∴當是等式恒成立,∴a=1

(2)(0,+∞)上任取,

e1,∴

,∴,

f(x)(0,+∞)上的增函數(shù).


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4(x-a)x2+4
.(a∈R)
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)設方程x2-2ax-1=0的兩實根為m,n(m<n),證明函數(shù)f(x)是[m,n]上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)如圖所示,在平面直角坐標系xOy上放置一個邊長為1的正方形PABC,此正方形PABC沿x軸滾動(向左或向右均可),滾動開始時,點P位于原點處,設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系是y=f(x),x∈R,該函數(shù)相鄰兩個零點之間的距離為m.
(1)寫出m的值并求出當0≤x≤m時,點P運動路徑的長度l;
(2)寫出函數(shù)f(x),x∈[4k-2,4k+2],k∈Z的表達式;研究該函數(shù)的性質(zhì)并填寫下面表格:
函數(shù)性質(zhì) 結(jié)  論
奇偶性
偶函數(shù)
偶函數(shù)
單調(diào)性 遞增區(qū)間
[4k,4k+2],k∈z
[4k,4k+2],k∈z
遞減區(qū)間
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零點
x=4k,k∈z
x=4k,k∈z
(3)試討論方程f(x)=a|x|在區(qū)間[-8,8]上根的個數(shù)及相應實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:
①對任意的實數(shù)x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y);
②f(1)=2;
③f(x)在[0,1]上為增函數(shù).
(Ⅰ)求f(0)及f(-1)的值;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ)(說明:請在(ⅰ)、(ⅱ)問中選擇一問解答即可.)
(。┰Oa,b,c為周長不超過2的三角形三邊的長,求證:f(a),f(b),f(c)也是某個三角形三邊的長;
(ⅱ)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當x>0時,f(x)<0恒成立.
(1)判斷f(x)的奇偶性及單調(diào)性,并對f(x)的奇偶性結(jié)論給出證明;
(2)若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應滿足的條件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一個給定的正整數(shù),a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在R上的函數(shù)f(x)滿足:
①對任意的實數(shù)x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y);
②f(1)=2;
③f(x)在[0,1]上為增函數(shù).
(Ⅰ)求f(0)及f(-1)的值;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ)(說明:請在(。、(ⅱ)問中選擇一問解答即可.)
(。┰Oa,b,c為周長不超過2的三角形三邊的長,求證:f(a),f(b),f(c)也是某個三角形三邊的長;
(ⅱ)解不等式f(x)>1.

查看答案和解析>>

同步練習冊答案