分析 根據(jù)定義域關(guān)于原點對稱,求得a=2,再根據(jù)f(x)為奇函數(shù),求得b=-2,再利用奇函數(shù)的性質(zhì)求得f(a)+f(b) 的值.
解答 解:根據(jù)奇函數(shù)f(x)=2016x3-5x+b+2得定義域為[a-4,2a-2],可得a-4+(2a-2)=0,求得a=2,
故條件為奇函數(shù)f(x)=2016x3-5x+b+2得定義域為[-2,2],∴f(0)=b+2=0,求得b=-2,
∴f(x)=2016x3-5x,∴f(a)+f(b)=f(2)+f(-2)=f(2)-f(2)=0,
故答案為:0.
點評 本題主要考查奇函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(x)=1;g(x)=$\frac{x}{x}$ | B. | f(x)=x-2;g(x)=$\frac{{x}^{2}-4}{x+2}$ | ||
| C. | f(x)=|x|;g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$;g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com