分析 作出圖象,由題意可得OA=b,OB=a,設(shè)OM=x,∠OMA=α,∠OMB=β,由三角函數(shù)的定義可得tanα=$\frac{x}$,tanβ=$\frac{a}{x}$,再由兩角差的正切公式可得tan(β-α)=$\frac{tanβ-tanα}{1+tanβtanα}$=$\frac{\frac{a}{x}-\frac{x}}{1+\frac{ab}{{x}^{2}}}$=$\frac{a-b}{x+\frac{ab}{x}}$,由基本不等式可得.
解答
解:如圖所示觀察者在M處,A、B為畫的下、上邊緣,
由題意可得OA=b,OB=a,設(shè)OM=x,∠OMA=α,∠OMB=β,
則分別在直角三角形中可得tanα=$\frac{x}$,tanβ=$\frac{a}{x}$,
∴tan(β-α)=$\frac{tanβ-tanα}{1+tanβtanα}$
=$\frac{\frac{a}{x}-\frac{x}}{1+\frac{ab}{{x}^{2}}}$=$\frac{a-b}{x+\frac{ab}{x}}$≤$\frac{a-b}{2\sqrt{ab}}$
當(dāng)且僅當(dāng)x=$\frac{ab}{x}$即x=$\sqrt{ab}$時(shí)取等號(hào),
由∵y=tanx在(0,$\frac{π}{2}$)為增函數(shù),
∴當(dāng)x=$\sqrt{ab}$時(shí),視角最大.
即觀察者離此畫$\sqrt{ab}$米時(shí),才能使得視角最大.
故答案為:$\sqrt{ab}$
點(diǎn)評(píng) 本題考查基本不等式求最值的實(shí)際應(yīng)用,涉及正切函數(shù)的單調(diào)性和兩角差的正切公式,屬中檔題.考查學(xué)生的轉(zhuǎn)化能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-1,$\frac{1}{2}$) | B. | (-1,2) | C. | ($\frac{1}{2}$,2) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [0,1) | B. | [0,1] | C. | [0,$\sqrt{5}$) | D. | [0,$\sqrt{5}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{100}{101}$ | B. | $\frac{200}{101}$ | C. | 2 | D. | $\frac{198}{101}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com