欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖,在菱形ABCD中,AB=2,∠ABC=60°,BD∩AC=O,現(xiàn)將其沿菱形對(duì)角線BD折起得空間四邊形EBCD,使EC=$\sqrt{2}$.
(Ⅰ)求證:EO⊥CD.
(Ⅱ)求點(diǎn)O到平面EDC的距離.

分析 (Ⅰ)證明:EO⊥平面BCD,即可證明EO⊥CD.
(Ⅱ)利用等體積方法,求點(diǎn)O到平面EDC的距離.

解答 (Ⅰ)證明:由題意,EO=OC=1,EC=$\sqrt{2}$,
∴EO2+OC2=EC2,∴EO⊥OC,
∵EO⊥BD,OC∩BD=O,
∴EO⊥平面BCD,
∵CD?平面BCD,
∴EO⊥CD.
(Ⅱ)解:△EDC中,ED=DC=2,EC=$\sqrt{2}$,S△EDC=$\frac{1}{2}×\sqrt{2}×\sqrt{4-\frac{1}{2}}$=$\sqrt{7}$,
設(shè)點(diǎn)O到平面EDC的距離為h,則由等體積可得$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×1=\frac{1}{3}×\sqrt{7}h$,
∴h=$\frac{\sqrt{21}}{14}$.

點(diǎn)評(píng) 本題考查線面垂直的判定與性質(zhì),考查等體積方法求點(diǎn)到平面的距離,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知a,b是實(shí)數(shù),則“a>1”是“a>2”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.己知命題p:“a>b”是“2a>2b”的充要條件;q:?x∈R,ex<lnx,則(  )
A.¬p∨q為真命題B.p∧¬q為假命題C.p∧q為真命題D.p∨q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.學(xué)校舉辦了一次田徑運(yùn)動(dòng)會(huì),某班有8人參賽,后有舉辦了一次球類運(yùn)動(dòng)會(huì),這個(gè)班有12人參賽,兩次運(yùn)動(dòng)會(huì)都參賽的有3人,兩次運(yùn)動(dòng)會(huì)中,這個(gè)班共有多少名同學(xué)參賽?( 。
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若$cosα=\frac{1}{3}$,且α為第四象限角,求$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)2-3i的虛部為(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點(diǎn)分別為A,B,其離心率$e=\frac{1}{2}$,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),△PAB面積的最大值為$2\sqrt{3}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)動(dòng)直線l過(guò)橢圓的左焦點(diǎn)F1,且l與橢圓C交于M,N兩點(diǎn),試問(wèn)在x軸上是否存在定點(diǎn)D,使得$\overrightarrow{DM}•\overrightarrow{DN}$為定值?若存在,求出點(diǎn)D坐標(biāo)并求出定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義在$[{\frac{1}{π},π}]$上的函數(shù)f(x),滿足$f(x)=f(\frac{1}{x})$,且當(dāng)$x∈[{\frac{1}{π},1}]$時(shí),f(x)=lnx,若函數(shù)g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.$[{-\frac{lnπ}{π},0}]$B.[-πl(wèi)nπ,0]C.$[{-\frac{1}{e},\frac{lnπ}{π}}]$D.$[{-\frac{e}{2},-\frac{1}{π}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.《九章算術(shù)》是我國(guó)古代的數(shù)字名著,書(shū)中《均屬章》有如下問(wèn)題:“今有五人分五錢(qián),令上二人所得與下三人等.問(wèn)各德幾何.”其意思為“已知A、B、C、D、E五人分5錢(qián),A、B兩人所得與C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差數(shù)列.問(wèn)五人各得多少錢(qián)?”(“錢(qián)”是古代的一種重量單位).在這個(gè)問(wèn)題中,E所得為( 。
A.$\frac{2}{3}$錢(qián)B.$\frac{4}{3}$錢(qián)C.$\frac{5}{6}$錢(qián)D.$\frac{3}{2}$錢(qián)

查看答案和解析>>

同步練習(xí)冊(cè)答案