【題目】設(shè)橢圓
的左焦點(diǎn)為
,下頂點(diǎn)為
,上頂點(diǎn)為
,
是等邊三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線
,過點(diǎn)
且斜率為
的直線與橢圓交于點(diǎn)
異于點(diǎn)
,線段
的垂直平分線與直線
交于點(diǎn)
,與直線
交于點(diǎn)
,若
.
(ⅰ)求
的值;
(ⅱ)已知點(diǎn)
,點(diǎn)
在橢圓上,若四邊形
為平行四邊形,求橢圓的方程.
【答案】(I)
;(II)(ⅰ)1,(ii)![]()
【解析】
(Ⅰ)根據(jù)幾何條件得
,再求離心率,(Ⅱ)(ⅰ) 設(shè)直線方程,解得A,C坐標(biāo),即得Q坐標(biāo),根據(jù)直線交點(diǎn)得P點(diǎn)坐標(biāo),根據(jù)弦長(zhǎng)公式得
,代入條件解得
的值;(ⅱ)先用b表示A,C坐標(biāo),根據(jù)平行四邊形得N坐標(biāo),代入橢圓方程得結(jié)果.
(I) 由題意可知,
,
.
.
(II)(ⅰ)
設(shè)橢圓方程為
,
聯(lián)立
得
解得:
因?yàn)?/span>
為
中點(diǎn),
,
因?yàn)?/span>
所在的直線方程為
令
解得![]()
=![]()
,
解得
或
(舍)
直線
的斜率為1.
(ii)
,
設(shè)
四邊形
為平行四邊形,
,
即
,
又
點(diǎn)
在橢圓上,
解得
,該橢圓方程為:![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠郑芏嘞M(fèi)者對(duì)手機(jī)流量的需求越來越大.某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了人口規(guī)模相當(dāng)?shù)?/span>
個(gè)城市采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):
(單位:元/月)和購買總?cè)藬?shù)
(單位:萬人)的關(guān)系如表:
定價(jià)x(元/月) | 20 | 30 | 50 | 60 |
年輕人(40歲以下) | 10 | 15 | 7 | 8 |
中老年人(40歲以及40歲以上) | 20 | 15 | 3 | 2 |
購買總?cè)藬?shù)y(萬人) | 30 | 30 | 10 | 10 |
(Ⅰ)根據(jù)表中的數(shù)據(jù),請(qǐng)用線性回歸模型擬合
與
的關(guān)系,求出
關(guān)于
的回歸方程;并估計(jì)
元/月的流量包將有多少人購買?
(Ⅱ)若把
元/月以下(不包括
元)的流量包稱為低價(jià)流量包,
元以上(包括
元)的流量包稱為高價(jià)流量包,試運(yùn)用獨(dú)立性檢驗(yàn)知識(shí),填寫下面列聯(lián)表,并通過計(jì)算說明是否能在犯錯(cuò)誤的概率不超過
的前提下,認(rèn)為購買人的年齡大小與流量包價(jià)格高低有關(guān)?
定價(jià)x(元/月) | 小于50元 | 大于或等于50元 | 總計(jì) |
年輕人(40歲以下) | |||
中老年人(40歲以及40歲以上) | |||
總計(jì) |
參考公式:其中
![]()
其中![]()
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計(jì)),易拉罐的體積為
,設(shè)圓柱的高度為
,底面半徑為
,且
,假設(shè)該易拉罐的制造費(fèi)用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費(fèi)用為
元
,易拉罐上下底面的制造費(fèi)用均為
元
為常數(shù)).
![]()
(1)寫出易拉罐的制造費(fèi)用
(元)關(guān)于
的函數(shù)表達(dá)式,并求其定義域;
(2)求易拉罐制造費(fèi)用最低時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠ABC=30°.△ABD中,∠ADB=90°,∠ABD=45°,且AC=1.將△ABD沿邊AB折疊后,
![]()
(1)若二面角C—AB—D為直二面角,則直線CD與平面ABC所成角的正切值為_______;
(2)若二面角C—AB—D的大小為150°,則線段CD的長(zhǎng)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在多面體
中,四邊形
為平行四邊形,平面
平面
,
,
,
,
,
,
,點(diǎn)
是棱
上的動(dòng)點(diǎn).
![]()
(Ⅰ)當(dāng)
時(shí),求證
平面
;
(Ⅱ)求直線
與平面
所成角的正弦值;
(Ⅲ)若二面角
所成角的余弦值為
,求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
為左右焦點(diǎn),
為短軸端點(diǎn),長(zhǎng)軸長(zhǎng)為4,焦距為
,且
,
的面積為
.
(Ⅰ)求橢圓
的方程
(Ⅱ)設(shè)動(dòng)直線
橢圓
有且僅有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)
,使得以
為直徑的圓恒過點(diǎn)
?若存在求出點(diǎn)
的坐標(biāo),若不存在.請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形
中,
,
.現(xiàn)沿對(duì)角線
將
折起,使點(diǎn)
到達(dá)點(diǎn)
.點(diǎn)
、
分別在
、
上,且
、
、
、
四點(diǎn)共面.
![]()
(1)求證:
;
(2)若平面
平面
,平面
與平面
夾角為
,求
與平面
所成角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com