已知,橢圓C以過點(diǎn)A(1,
),兩個焦點(diǎn)為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個動點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
(1)
.(2)直線EF的斜率為定值,其值為
。
解析試題分析:(1)由題意,c=1,可設(shè)橢圓方程為
。
因為A在橢圓上,所以
,解得
=3,
=
(舍去)。
所以橢圓方程為
. 6分
(2)設(shè)直線AE方程:得
,代入
得![]()
設(shè)E(
,
),F(xiàn)(
,
).因為點(diǎn)A(1,
)在橢圓上,所以
,
! 9分
又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以
代
,可得
,
。
所以直線EF的斜率
。
即直線EF的斜率為定值,其值為
。 13分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),直線與橢圓的位置關(guān)系。
點(diǎn)評:中檔題,本題求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用的橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。研究直線與圓錐曲線的位置關(guān)系,往往應(yīng)用韋達(dá)定理,通過“整體代換”,簡化解題過程,實現(xiàn)解題目的。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
的頂點(diǎn)為
,焦點(diǎn)為
,
. ![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n 為過原點(diǎn)的直線,
是與n垂直相交于P點(diǎn),與橢圓相交于A, B兩點(diǎn)的直線,
.是否存在上述直線
使
成立?若存在,求出直線
的方程;并說出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的焦點(diǎn)與橢圓
的右焦點(diǎn)重合.(Ⅰ)求拋物線
的方程;
(Ⅱ)動直線
恒過點(diǎn)
與拋物線
交于A、B兩點(diǎn),與
軸交于C點(diǎn),請你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長總能構(gòu)成等比數(shù)列?說明你的結(jié)論并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若雙曲線
的離心率等于
,直線
與雙曲線
的右支交于
兩點(diǎn).
(1)求
的取值范圍;
(2)若
,點(diǎn)
是雙曲線
上一點(diǎn),且
,求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:![]()
(1)求曲線C1的普通方程
(2)曲線C2的方程為
,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點(diǎn),求|PQ|的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知圓
經(jīng)過點(diǎn)
,圓心為直線
與極軸的交點(diǎn),求圓
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)
,焦點(diǎn)在x軸上,離心率為
的橢圓過點(diǎn)(
,
).![]()
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)
的直線與該橢圓交于
、
兩點(diǎn),滿足直線
,
,
的斜率依次成等比數(shù)列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
的焦點(diǎn)在拋物線
上,點(diǎn)
是拋物線
上的動點(diǎn).![]()
(Ⅰ)求拋物線
的方程及其準(zhǔn)線方程;
(Ⅱ)過點(diǎn)
作拋物線
的兩條切線,
、
分別為兩個切點(diǎn),設(shè)點(diǎn)
到直線
的距離為
,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com