分析 (1)由余弦定理,$2a•\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=3$,將b=3,c=2代入,解得a的值;
(2)若$\frac{c}=\frac{cosC}{1+cosB}$,由正弦定理,$\frac{sinC}{sinB}=\frac{cosC}{1+cosB}$,化簡(jiǎn)得sinC=sin(B-C),由正弦定理可得,$\frac{sinB}=\frac{c}{sinC}=\frac{2sinCcosC}$,即可求cosC的值.
解答 解:(1)由余弦定理,$2a•\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=3$,將b=3,c=2代入,解得:a=2.…(6分)
(2)由正弦定理,$\frac{sinC}{sinB}=\frac{cosC}{1+cosB}$,化簡(jiǎn)得sinC=sin(B-C),
∴C=B-C或C+B-C=π(舍去),則B=2C,
由正弦定理可得,$\frac{sinB}=\frac{c}{sinC}=\frac{2sinCcosC}$,
將b=3,c=2代入解得$cosC=\frac{3}{4}$.…(14分)
點(diǎn)評(píng) 本題考查正弦、余弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com