【題目】已知
為等腰直角三角形,
,將
沿底邊上的高線
折起到
位置,使
,如圖所示,分別取
的中點
.
![]()
(1)求二面角
的余弦值;
(2)判斷在線段
上是否存在一點
,使
平面
?若存在,求出點
的位置,若不存在,說明理由.
【答案】(1)
(2)點
是線段
的中點時,
平面
.
【解析】
試題(1)以
所在直線為
軸建立空間直角坐標系,分別求出平面
與平面
的一個法向量,根據(jù)空間向量夾角余弦公式,可得結(jié)果;(2)假設(shè)在線段
上存在一點
,使
平面
,設(shè)
,根據(jù)
可求得
.
試題解析:由題知
,且
,分別以
所在直線為
軸建立空間直角坐標系,則點
.
(1)
,設(shè)平面
的法向量為
,則
,得
,得
,當
時,得
,同理可得平面
的一個法向量為
,那么
,
所以二面角
的余弦值為
;
(2)假設(shè)在線段
上存在一點
,使
平面
,設(shè)
,
則由
,得
,得
,
那么
,當
平面
時,
,
即存在實數(shù)
,使
,解得
,那么
,
即點
是線段
的中點時,
平面
.
【方法點晴】本題主要考查利用空間向量求二面角的大小以及存在性問題,屬于中檔題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應(yīng)點的坐標,求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
為公差不為0的等差數(shù)列,首項
且
,
,
成等比數(shù)列.
(1)求數(shù)列
的通項公式;
(2)設(shè)數(shù)列
的前n項和為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,
是橢圓的左、右焦點,過
作直線
交橢圓于
兩點,若
的周長為8.
![]()
(1)求橢圓方程;
(2)若直線
的斜率不為0,且它的中垂線與
軸交于
點,求
點的縱坐標的范圍;
(3)是否在
軸上存在點
,使得
軸平分
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,分別記錄了4月1日至4月5日每天的晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 12 | 11 | 13 | 10 | 8 |
發(fā)芽率 | 26 | 25 | 30 | 23 | 16 |
(1)從這5天中任選2天,求至少有一天種子發(fā)芽數(shù)超過25顆的概率;
(2)請根據(jù)4月1日、4月2日、4月3日這3天的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(3)根據(jù)(2)中所得的線性回歸方程,預(yù)測溫差為
時,種子發(fā)芽的顆數(shù).
參考公式:
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點,點M在線段PD上.
![]()
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若M為PD的中點,求證:ME∥平面PAB;
(Ⅲ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的兩個焦點
,
,離心率為
,
的周長等于
,點
、
在橢圓上,且
在
邊上.
![]()
(1)求橢圓
的標準方程;
(2)如圖,過圓
上任意一點
作橢圓的兩條切線
和
與圓
交與點
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、
后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
![]()
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中
后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的![]()
C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)
后比
前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)
后比
后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交通指數(shù)是指交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為
,其范圍為
,分別有五個級別:
,暢通;
,基本暢通;
,輕度擁堵;
,中度擁堵;
,嚴重擁堵.在晚高峰時段(
),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.
![]()
(1)求出輕度擁堵、中度擁堵、嚴重擁堵的路段的個數(shù);
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴重擁堵的路段中共抽取6個路段,求依次抽取的三個級別路段的個數(shù);
(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶(約1202—1261)被國外科學(xué)史家贊譽為“他那個民族,那個時代,并且確實也是所有時代最偉大的數(shù)學(xué)家之一”.他獨立推出了“三斜求積”公式,求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實.一為從隅,開平方得積.”把以上這段文字寫成從三條邊長求三角形面積的公式,就是
.現(xiàn)如圖,已知平面四邊形
中,
,
,
,
,
,則平面四邊形
的面積是_________.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com