如圖,在三棱柱
中,△
是邊長為
的等邊三角形,
平面
,
,
分別是
,
的中點(diǎn). ![]()
(1)求證:
∥平面
;
(2)若
為
上的動點(diǎn),當(dāng)
與平面
所成最大角的正切值為
時(shí),求平面
與平面
所成二面角(銳角)的余弦值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),且滿足
=
=
=
(如圖(1)),將△AEF沿EF折起到△
EF的位置,使二面角![]()
EF
B成直二面角,連接
B、
P(如圖(2)).![]()
(1)求證:
E⊥平面BEP;
(2)求直線
E與平面
BP所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面
是邊長為
的菱形,
,
底面
,
,
為
的中點(diǎn),
為
的中點(diǎn).![]()
(Ⅰ)證明:直線
平面
;
(Ⅱ)求異面直線
與
所成角的大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐S
ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的
倍,P為側(cè)棱SD上的點(diǎn).![]()
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P
AC
D的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長為2的等邊三角形,AE=1,CD與平面ABDE所成角的正弦值為
.![]()
(Ⅰ)若F是線段CD的中點(diǎn),證明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐
中,底面
為平行四邊形,側(cè)面
面
,已知![]()
(Ⅰ)求證:
;
(Ⅱ)在SB上選取點(diǎn)P,使SD//平面PAC ,并證明;
(Ⅲ)求直線
與面
所成角的正弦值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1, 在直角梯形
中,
,
,
,
為線段
的中點(diǎn). 將
沿
折起,使平面![]()
平面
,得到幾何體
,如圖2所示.
(1)求證:
平面
;
(2)求二面角
的余弦值. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,
,![]()
(1)求證:AC⊥BF;
(2)求點(diǎn)A到平面FBD的距離. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐
中,底面
是邊長為2的正方形,
,且
,點(diǎn)
滿足
.
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)在線段
上是否存在點(diǎn)
使得
平面
?若存在,確定點(diǎn)
的位置;若不存在,請說明理由.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com